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Abstract: In this paper, we investigate the BMAP/BMSP/1 queueing system. Analysis of this
queueing system is carried out using the zeros of the associated characteristic function of
the vector-generating function of system-length distribution at random epoch. A comparative
study is also carried out to compare the roots method with that of the matrix-geometric
method. We then obtain the steady-state system-length distributions at pre-arrival and post-
departure epochs. The sojourn-time distribution of an arbitrary customer in an arriving batch
is also derived. Various performance measures such as mean system-length and mean sojourn-
time are determined. We generate adequate numerical results based on the diversified inputs
but only a few of them are appended in the forms of tables and graphs.
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1. Introduction

Bulk queues (sometimes called batch queues), where jobs arrive in and/or are served
in batches of random size, have received a special interest over the last few decades due to
their utility in many practical real-life situations. Queueing models with correlated batch
arrival as well as batch service processes play a crucial role in recent trends of the queueing
behavior. The versatile Markovian point process pioneered by Neuts [23], and conveniently
represented as the batch Markovian arrival process (BMAP) by Lucantoni [21] have found
wide range of applications in several practical areas. The BMAP is the generalization of
batch Poisson process and includes many well-known arrival processes such as Markov-
modulated Poisson process, Markovian arrival process (MAP) and batch PH-renewal pro-
cess, see, for example, Lucantoni [22]. The use of BMAP as an arrival process in queueing
modelling readily leads to the so called matrix-analytic formalism, where scalar quantities
are replaced by matrices. The BMAP is a powerful arrival process which captures depen-
dent and non-exponentially distributed interarrival times, and correlated batch sizes. From
an analytical viewpoint, the BMAP is a tractable arrival process and it is a convenient tool
in many real-life stochastic modeling contexts. Keeping an eye on this prospect, the BMAP
beautifully represents the queueing characteristics both in analytical and application aspects.
The concept of BMAP has gained widespread use in queueing modelling of communication
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systems such as cellular networks, web browsing, traffic modeling of IP networks (Kim et
al. [17] and Klemm et al. [18]), hybrid highspeed communication systems based on laser
and radio technologies (Vishnevskii ef al. [32]), wireless networks with linear topology
(Vishnevsky et al. [33]), production and manufacturing (Gold and Tran-Gia [10], and Shan-
thikumar et al. [30]) and other application areas. For more information about applications
of BMAP, see Vishnevskii and Dudin [31], Klemm ef al. [19], Buchholz and Kriege [7],
Liu et al. [20], and Heyman and Lucantoni [13]. Qualitatively, the consideration of the
BMAP for modelling the arrival input greatly enhances the versatility of the queueing mod-
els. This qualitative behavior of these queueing models continues to attract the attention of
researchers and practitioners. The batch Markovian service process (BMSP) has the same
features as that of BMAP wherein arrivals are replaced with service completions. Hence,
BMSP has similar impact on analytical results and application areas for service process in
queueing system. For more details about the BMAP, its history, properties, special cases
and related research, see Lucantoni [22] and survey paper by Chakravarthy [8].

Many authors have analyzed several queueing models with various types of arrival as
well as service processes and such results are available in the literature. However, very few
authors dealt with correlated arrival and service processes. Abate ef al. [1] and Alfa et
al. [3] discussed the stationary distributions of M AP/MSP/1 queue based on the pertur-
bation theory. Ozawa [26] derived the stationary sojourn-time distribution and asymptotic
properties of the M AP/MSP/1 queue through its matrix exponential form. Horvith et
al. [15] analyzed the queueing networks of M AP/MSP/1 queue by proposing the de-
composition based approximate numerical analysis. Zhang et al. [36] proposed a family of
finite approximations for the departure process of a BM AP/M SP/1 queue and the depar-
ture process approximations are derived via an exact aggregate solution technique (called
ETAQA). Samanta et al. [28] analyzed the BM AP/MSP/1 queueing model based on
roots of the associated characteristics equation of the probability vector-generating function
of system-length distribution at random epoch. Wang et al. [35] applied a matrix-analytical
approach to investigate the finite-buffer DBM AP/DMSP/1/K queue in discrete-time
and examined the bursty nature of packet loss pattern in wireless local communications.
From the above literature overview, we may see that the existing research related to the
bursty and correlated nature of arrival as well as service processes has mainly focused on
the single service. However, a few works have been done on the corresponding batch ser-
vice queue. Banik [4] discussed the BM AP/MSP@" /1 queueing system based on the
use of matrix-analytic method developed by Neuts [25], where customers are served in
batches of maximum size ‘0’ with a minimum batch size ‘a’ in which the service rate for
all service batches remains the same. To the best of authors’ knowledge, very few results
on BMSP are available so far in the queueing literature, where the service rate depends on
service batch size. Using a matrix-analytical approach, Wang et al. [34] analyzed the finite-
buffer DBMAP/DBMSP/1/K queue in discrete-time to evaluate the long term packet
loss probabilities over wireless networks. Sandhya et al. [29] studied an infinite-buffer
BMAP/BMSP/1 queue by partitioning the infinitesimal generator with blocks having
groups of customers of maximum size of arrival and service batch sizes. Based on the use of
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matrix-geometric method (MGM) pioneered by Neuts [24], they determined the stationary
probability of the number of customers waiting for service and other performance measures.

The above literature survey motivates us to analyze the BAM AP/BMSP/1 queueing
system in which customers are served in batches with different service rate for different
batch size. For analytical and computational purpose, we present the queueing model with a
suitable matrix structure form which makes it easy to study in a unified and algorithmically
tractable manner. We assume that the random batch sizes of arrival and service processes are
restricted to be finite. First, we obtain the system-length distribution at random epoch based
on the zeros of the characteristic polynomial of the probability vector-generating function.
A comprehensive analysis of the system-length distribution at random epoch is also carried
out using the matrix-geometric method based on reblocking the underlying Markov chain in
QBD form. See Horvath [14], He [12, p. 260], Benzi et al. [6, p. 77], and Alexander [2,
p.74] for details. We then derive the steady-state system-length distributions at pre-arrival
and post-departure epochs. In this queueing system, the determination of the sojourn-time
distribution of an arbitrary customer in an arriving batch is challenging because customers
are arrived in batches according to BMAP as well as they are also served in batches accord-
ing to BMSP. However, we overcome the challenge successfully to obtain the sojourn-time
distribution of an arbitrary customer in an arriving batch. The main advantage of our work is
to derive the sojourn-time distribution of an arbitrary customer in terms of time parameter di-
rectly without converting from the Laplace-Stieltjes transform (L.-S.T.). This is analytically
simple and easy to compute. Further, we find the L.-S.T. of the sojourn-time distribution
function to obtain the mean sojourn-time. Various performance measures such as the mean
system-length and the mean sojourn-time are obtained. To justify our analytical results,
we generate adequate outputs based on the diversified inputs but only a few of them are
appended here in the forms of tables and graphs.

This paper is organized as follows. In Section 2, we give the description of the model.
The steady-state system-length distributions at various time epochs and the sojourn-time dis-
tribution of an arbitrary customer in an arriving batch are analyzed in Section 3. Numerical
results are presented in Section 4. Section 5 concludes the paper.

2. Model Description

We consider an infinite-buffer single-server BM AP/BMSP/1 queueing system,
wherein customers arrive according to a batch Markovian arrival process (BMAP). The cus-
tomers are served in batches in accordance with the first-come-first-served (FCFS) queueing
discipline under a batch Markovian service process (BMSP). The arrival process BMAP is
characterized by the m, x m, rate matrices Dy, k£ > 0, where D, corresponds to an arrival
of batch size k if k¥ > 1, and without an arrival if k¥ = 0. The m,-state of the BMAP is usu-
ally referred to as the phase (state) of the underlying Markov chain (UMC) corresponding to
the BMAP. The (4, j)-th element [Dy];; of Dy, denotes the phase transition rate of the UMC
corresponding to the BMAP from state 7 to j with a batch arrival of size k. The matrix Dy
has non-negative off-diagonal and negative diagonal elements, and the matrix Dy, k£ > 1,
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has non-negative elements. The diagonal element [Dy];; of D represents the mean rate of
exponential sojourn time in state ¢, 1 < ¢ < m,. From practical point of view, the size of
arriving batch is to be of finite support. Therefore, we assume that the random batch size of
arrival process to be finite with maximum batch size Vy. This gives Dy, = 0, for £ > Ny+1.
Since D = Zgio D;, is an infinitesimal generator of the underlying Markov chain corre-
sponding to the BMAP, there exists a stationary probability vector 7, such that w,D = 0
and T,e = 1, where e denotes a column vector with an appropriate order whose all elements
are 1. The average arrival rate \* of the stationary BMAP is given by \* = 7, 22\21 kDye.

Similarly, the service process BMSP is characterized by the m, X m, rate matrices
Ly, k > 0, where L, corresponds to a service of batch size k if £ > 1 and without a service
if £ = 0. The mg-state of the BMSP is usually referred to as the phase (state) of the UMC
corresponding to the BMSP. The (i, j)-th element [Ly];; of L denotes the phase transition
rate of the UMC corresponding to the BMSP from state ¢ to 5 with a batch service of size
k. The matrix L has non-negative off-diagonal and negative diagonal elements, and the
matrix Ly, & > 1, has non-negative elements. The diagonal element [L];; of Ly represents
the mean rate of exponential sojourn time in state . Again, from practical point of view,
the size of servicing batch is to be of finite support. Therefore, we assume that the random
batch size of service process to be finite with maximum batch size M. This gives L, = 0,
for k > My +1. Since L = 224:00 Ly is an infinitesimal generator of the underlying Markov
chain corresponding to the BMSP, there exists a stationary probability vector 7t such that
7w,L = 0 and w,e = 1. The average service rate p1* of the stationary BMSP is given by
W=, 224:01 kLye. The traffic intensity is given by p = 2— < 1.

3. Analysis of the Model

In this section, we carry out the analysis of the system-length distributions at random,
pre-arrival, and post-departure epochs as well as the sojourn-time distribution of an arbitrary
customer in an arriving batch.

3.1. System-length distribution at random epoch

We first consider the steady-state system-length distribution at random epoch. For this
purpose, we define the state of the system at time ¢ by Y (¢t) = (N(¢),I(¢), J(t)), where
N (t) denotes the number of customers in the system, /() the phase of the BMAP and .J(t)
the phase of the BMSP at time ¢. Then {Y (¢) };>¢ is a continuous-time Markov chain on the
state space {(n,4,7) :n > 0,1 < i <m,, 1 < j < ms}. The Toeplitz type block-structured
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infinitesimal generator Q for the BM AP/BM S P/1 queue has the following structured:

By A1 Ay Az Ay A5
S1 Ay A1 Ay A Ay
S2 S1 A A1 Ay A
Q=| Ss S2 Si A¢ Ay Ay
Si Sz S Si Ag Ay
Ss S4 S;3 Sz S1 Ag--

where the matrix §n, n > 1, of order m,ms x m,ms decreases the level of the chain by n
and it reaches to the level zero of the chain, while the matrix B of order m,m, X mg,ms
remains at the level zero. The matrix S,,,n > 1, of order m,m, x m,m, decreases the level
of the chain by n and it reaches to the respective level of the chain. The matrix A,,,n > 1,
of order m,m4 X m,m; increases the level of the chain by n, while the matrix A of order
mqms Xm,ms remains at the same level. We assume that the service process runs during idle
periods of the system without generating any real service completion. Therefore, the block
matrices of the generator (1) can be expressed using the Kronecker product ® operation as

By = Dy®1L,, +L, ®L,
S, = L., ®L,, n>1,
S, = I,,®L,, n>1,
Ay = Dy®I,, +1,, ®Ly,
A, = D@L, n>1,

where I, is the identity matrix of order r, and f;n = 224:0” L., n>0.

Let w(n) = [m11(n), ..., Tim,(n), ..., Tij(n), ..., Tma1 (), - o, Tmgm, (0)], n > 0, de-
note the row vector according to the block structure of the generator Q, where 7;;(n) rep-
resents the steady-state probability that there are n customers in the system with the ar-
rival process being in phase i (1 < i < m,) and the service process being in phase j
(1 < j < my). Define the stationary probability vector IT of IIQ = 0 with ITe = 1 in
the partitioned form as IT = [w(0), 7 (1), 7(2), 7 (3),...]. Then IIQ = O can be written
explicitly as

My
m(0)Bo+ Y _m(n)S, = 0, 2)
n My i
m(0)A, + Y w(k)Au+ > w(n+k)S, = 0, n>L 3)
k=1 k=1

Multiplying (2) by z" and (3) by 2", using w*(z) = Y ., w(n)z", after simplification, we

5
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obtain
7 (2) = [71'(0) (Ima ® (L(z )) +Mi:17r i I, L) (2" — 1)] X

adj [D(2) & L(=")]
(detuD<z>eaL<z—w]>’ @

where adj[-] and det[-] are the adjoint matrix and the determinant of a square matrix, respec-
tively.

To obtain the system-length distribution 7(n),n > 0, we use the zeros of the char-
acteristic polynomial of the vector-generating function 7v*(z). Our primary objective is to
correctly determine the unknown vectors 7w(n), 0 < n < M,—1, that occur in (4) above. For
this, the idea of the zeros of det[D(z) @ L(z!)] in the unit disk is required. We know that if
p < 1thendet[D(z) @ L(27")] = 0 has exactly (mM; — 1) roots inside of |z| = 1, one root
at z = 1 and other m N, roots outside of |z| = 1 (including multiplicity), where m = m,-ms.
In this connection, the interested reader is referred to Gail et al. [9] or Samanta er al. [28].
We denote the roots whose absolute value is less than one as 71, 2,73, - . ., Yma,—1 and the
roots whose absolute value is greater than one as oy, o, as, . . ., y,n,. We assume that all
roots are distinct. Since, each component of 7v*(z) is convergent in |z| < 1, therefore the ze-
ros of det[D(z) @ L(z~1)] whose absolute value is less or equal to one must be the zeros of
the numerator of each component of 7w*(z). This shows that we can determine the unknown
vectors 7w(n), 0 < n < My — 1, by considering any one component of 7v*(z). Therefore, we
rewrite the right-hand side of 7v*(z) in (4) as

oy [Fu(2) Fi(2) Fram, (2)
=[G

®)

where G(z) = det[D(z) @ L(z7')] and F};(2) is the ij-th component of the vector

[ﬂ@) (T ® (L= = Lo ) ) + Mif i I, ®Lg) (=" — 1)

adj [D(z) ® L(z7")] .

Now, since each component W;‘j(z), 1 <i<mg 1l < j < mg of #*(2) is convergent in

<
|z| < 1and~,92,7s,- -, Ymum,—1. are the zeros of G(z), we have
Fij(vi)) =0, 1<i<m,, 1<j<m,, k= cooymMy — 1, (6)
and using the normalization condition 7v*(1)e = 1, we have
3P IOIID IS ATH
lim —= === =1 7
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where f'(£) is the first order derivative of f(z) at z = &.

Equations (6) and (7) give m M, linearly independent simultaneous equations in m M
unknowns, 7;;(n)’s (0 < n < My—1,1 <i < mg,,1 < j < mg). Solving these mM,
equations, we determine the M, unknown vectors 7w(n), 0 < n < My — 1. Now, after
substituting the value of 7w(n), 0 < n < My — 1, in (5) and letting 7w = 7v*(1), we have
Fi(1) Fy(1) Frgm., (1)

MaMs

Tn e o0

T =

Having found 7(n), 0 < n < M, — 1 accurately, we now give our attention to calculate
the remaining state probabilities 7(n), n > M,. After substituting the value of 7 (n),
0 <n < My—1,in (4), the 7w*(z) is a rational function with completely known polynomials
both in the numerator and the denominator, where the degree of numerator is less than to
the degree of denominator. To determine the remaining probability vectors 7 (n), n > M,
we proceed to find the partial fractions of 7w*(z) involving the zeros of det[D(z) @ L(z71)]
whose absolute value is greater than one. Note that the zeros of det[D(z) & L(z71)] whose
absolute value is less or equal to one do not play any role in making partial fractions. Now,
applying the partial fraction method on the ij-th component 7};(z) of 7*(z), we have

mNg

)=y B 1 <i<m,, 1<j<m,, 8
m;5(2) ;ak_z, <i<m, 1<j<m ®)
where
Ckl]:_ f(ak)7 1§Z§ma7 1§]§m87 k:17277mN0
’ G(Oék)

Now, collecting the coefficients of 2™ from both the sides of (8), we have

mNg C
mj(n)zz e, 1<i<mg, 1<j<m,, n>0,
k=1 "k
and hence
mNo mNg mNg
Cr.11 Cl.ij Clmam.
m)-[Z&n+1,__.,zan+l,...,z b | > ©)
k=1 k k=1 "k k=1 k

The mean system-length can be obtained from (9) as L, = >~ nm(n)e. From the Little’s
law, we also have mean sojourn time Wy as W = %

For a comparative study between the roots method and the matrix-geometric method,
we now proceed to find out the random epoch probabilities 7v(n), n > 0, using the matrix-

geometric method given in Neuts [24]. For this purpose, reblocking the Toeplitz type block-
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structure infinitesimal generator QQ given above in the QBD form as

vV Z 0

o O O >4
S
S M < N

0
0
Z
Y
X

“NO OO

NOoOooo

o oo

(== e R s R en B e

where the block matrices V, X, Y and Z each of order k =

mazx(Ny, My) are given by

Ay

As
A,

co -
co -

o
o

P
<
o

A, A;
As Ay

Se—4
Se—3
S¢_2

Sy

co

o

f&¢_2
Ay s
Ay y

© o o

) (10)

mams(¢ + 1) with ¢ =

© o o
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Ay Ay Ay - o Ay, Ay Ay
S, Ay Ay - - Ays Ay, Al
S, S, Ay o o Agy Ays Ay,
Y=|: : : I : : :
So—s Sssz Sy_q -+ - Ag A, A,
Se-1 Se2 Sy3 - - S A, A,
S  Ss1 Sso -+ -+ S, S, A,

In order to efficiently solve the system of linear algebraic equations IIQ = 0 with
ITe = 1, we reblock the vector IT as IT = [Y'(0), Y (1), X (2),...], where X' (n) = [w(n(¢+
1)+0),...,mn(p+1)+k),...,m(n(¢ + 1) + ¢)], n > 0. Therefore, IIQ = O can be
written explicitly for QBD form as

TOV+Y(1)X = o0, (11)
Yn—-1D)Z+Yn)Y+YXY(n+1)X = 0, n>1. (12)

Applying the matrix-geometric method given in Neuts [24] on (11) and (12), we have
Y(n)=YOR", n>0, with R’=1I,, (13)

where the square matrix R of order x is the minimal non-negative solution to the matrix-
quadratic equation

Z +RY + R*X =0,

and all eigenvalues of R lie inside the unit disk. This matrix R is evaluated numerically by
a simple iterative scheme as follows:

Rn+1]=—-A-R*n]C, n>0, with R[0] =0,

where A = ZY !, C = XY ! and R|[n] is the value of R at the n-th iteration.
To obtain Y (0), we solve the system of linear x equations

Y(0)(V+RX) =0,
from which one equation is replaced by the normalization condition Y (0)(I, — R) ‘e = 1.
Once we know R and Y (0), we can use the result (13) to get 7w(n), n > 0.
3.2. System-length distribution at pre-arrival epoch

Let 7= (n) = [m3(n), .., T, (0), - sm(n), w1 (0), s (R)], 0 >0,
denote the row vector according to the block structure of the generator Q, where ;;(n)
represents the pre-arrival epoch probability that an arbitrary customer of an arriving batch
finds n customers (including the customers in front of him in his batch) in the system with
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the arrival process being in phase ¢ and the service process being in phase j. Therefore, we
have

n

m(n)=> =(r) (Hnﬂ_r ® Ims), n >0,

r=0

where H,, = /\i gik D,,k > 1, is a matrix of order m, X m, whose (7, j)-th element
[Hy)i; represents the probability that the position of an arbitrary customer in an arriving
batch is k£ with batch arrival phase changes from state 7 to j. For more details, the interested
reader is referred to Samanta [27].

3.3. System-length distribution at post-departure epoch

Let w*(n) = [r7,(n),..., 7, (n),...,755(n),....m (), ...,mh ()], n >0,
denote the row vector according to the block structure of the generator Q, where W;;(TL)

represents the post-departure epoch probability that there are n customers in the system
immediately after service completion of a batch with the arrival process being in phase ¢
and the service process being in phase j. Hence, using the “rate-in and rate-out” argument;
for more details, see Kim et al. [16], we have

S () (Ima ® Lkn)

wt(n) = hentl n > 0.

55 w0 (1 oL Je

n=0k=n+1

3.4. Sojourn-time distribution

In this section, we obtain the sojourn-time distribution of an arbitrary customer in an
arriving batch. The sojourn time means that the total time spent by a customer in the system
(from its arrival until departure). For this, let A'() denote the number of customers served in
the time interval (0, z] and J (=) be the phase (state) of the underlying Markov chain corre-
sponding to the BMSP at time z with state-space {7 : 1 < i < my}. Then {(N(x), T (z))} is
a two-dimensional Markov process of BMSP with state-space {(n,i) : n > 0,1 < i < m,}.
Let {P(n,z),n > 0,2 > 0} be an m, X m, matrix whose (i, j)-th element is the conditional
probability defined as

Fij(n,x) = PriN(z) = n, J(x) = jIN(0) = 0,7 (0) = i}, 1 <i,j <ms.

Using the property of BMSP and probability arguments, we have the following system of
matrix differential-difference equation

—an ZPkm nek, n >0, (14)

with P(0,0) = L,,, and P(n,0) = 0, for n > 1.

10
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Let W(ZL’) = [Wll(.fﬁ), RN Wlms(l'), ey Wij(ﬂf), e Wmal(ﬂf), ey Wmams(x)], T 2
0, denote the row vector according to the block structure of the generator Q, where W;;(x)
represents the stationary joint probability that the sojourn time is at most a time x with
the arrival phase being in 7 and the service phase being in j at time z, given that arbitrary
customer arrived at time z = 0. Suppose that an arbitrary customer sees the system with 7,
n > 0, customers ahead of him upon arrival. If an arbitrary customer completes his service
in the time interval (x, z 4 dz|, then k, 0 < k < n, customers are served in the interval (0, ]
and a batch of size at least (n + 1 — k) customers are served during dx time unit. Thus,
the elementary probability vector dW (x) that an arbitrary customer completes his service
in the time interval (z, z + dz] is given by

dW (x) = Zﬂ_(n) Z (Ima ® P(k:,x)in+1_kdx) x> 0.
n=0 k=0
dW (x)
dz

Hence, the vector probability density function w(z) = is given by

n

w(z) = Zﬂ"(n) Z (Ima ® P(k,x)inﬂk) x> 0. (15)

k=0

The evaluation of the matrix P(n, ), n > 0, occurs in (15) can be carried out along the lines
proposed by Lucantoni [21] for BMAP, which is also same for the BMSP. Hence, applying
the uniformization argument to the matrices P(n, z) as presented by Lucantoni [21], we
have

P(n,z) = Ze‘ewﬂU(’“) n>0, >0, (16)

Koo

where 6 = max;[—Lol;;, 1 <i < mgand U™ are given by

U+ — g 4 g Zng)Ln_r, n=>0, k=0,
r=0

with U =1, UY =0,n > 1.

Hence, the cumulative sojourn-time distribution of an arbitrary customer in an arriving batch
is given by

W) — /Oxw(t)dt
= Y 7w (n)

n

<Ima ®/ P(k,t)dtf,nﬂ_k), x> 0. (17)
0

=0

11
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Using (16) in (17), we obtain

= Z 7 (n) (Ima ® Z Jr(:C)U,(:)f;nHk) x>0,
n=0 k=0 r=0

Jo(z) = /wwdt

rl

where

can be calculated by the iterative scheme

Jolx) = %(1 - e-9x>,

JT(IE) = Jr—l(w)_(—

In order to determine the mean sojourn time of an arbitrary customer, let us define the L.-S.T.
of w(z) and P(n, z) as

W(s) = /Oooesmw(x)dx, Re(s) > 0,

P(n,s) = / e **P(n,x)dr, n>0.
0

Now, multiplying (15) by e~** and integrating w.r.t. x over 0 to co, we obtain

Zw Z( ®f’(k,s)ﬁn+1k>, Re(s) > 0, (18)

k=0

where P(k, ), k > 0, can be obtained by taking L.-S.T. of (14) as
P(0,s) = (sLn, — Lo},
P(k,s) = > P(rs)LiP(0,s), k>1
Differentiating (18) w.r.t. s and setting s = 0, we obtain the mean sojourn time W =

_dw(s)e
ds

|s=o of an arbitrary customer, and it is given by

W = Zw Z ( ® f’(l)(k,O)in+1_k> e,

k=0

where the first order derivative P4 (k, 0) of P(k, s) at s = 0 is given by

PU(0,0) = —(~TLo) 7

N k—1

PY(k,0) = [P(l) i,0)Li_; P(z’,O)Lk_i(—LO)‘l](—LO)‘l, k> 1.
=0

12
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4. Numerical Results

We have done the numerical work based upon the analytical procedure discussed in this
paper. To justify our analytical results, we have created outputs based on the diversified
inputs but only a few of them are appended here in the forms of tables and graphs. All
the calculations are performed using MAPLE software on a PC having configurations as
Intel(R) Core 17-6500U processor @ 2.50 GHz with 8 GB DDR2 RAM in Windows 10
environment. All the numerical results were carried out in high precision, but they are
reported here in 6 decimal places. The analytical results are not affected by considering the
maximum batch size of the arriving batch either less or greater than equal to the maximum
service batch size. To show this impact, we have taken two numerical examples with (7)
maximum batch size of the arriving batch is less than maximum service batch size, i.e.,
Ny < My, (i) maximum batch size of the arriving batch is greater than maximum service
batch size, i.e., Ny > Mj. The numerical results for these two cases have been presented in
Tables 1 - 8.

Example 1: We have presented the system-length distributions at various time epochs as
well as the sojourn-time distribution of an arbitrary customer in an arriving batch in Tables
1 - 4. For case (i), we choose the following rate matrices D,,, n > 0, of order m, = 2 of
the arrival process BMAP with maximum arrival batch size Ny = 10:

[ 0346 0.069 0.005 0.007 0.014 0.022
e P —0.376]’ - [0.051 0.018]’ - [0.002 0.054]’
0.011 0.032 0.006 0.080 0.080 0.020
br= [ 0.008 0.004 ] - [0.002 0.003 ] . [0.003 0.001 ]

including D, = 0, k € N—{3,5,7,9,10}, where N is the set of natural numbers. Hence,
w,D = 0and 7,e = lyield 7, = [ 0.562738 0.437262 | with \* = 1.576076.

Again, we choose the following rate matrices L,,, n > 0, of order my; = 3 of the service
process BMSP with maximum service batch size M, = 18:

[ —0.414 0.069  0.014 0.000 0.005 0.007
Lo = 0.122 —-0.224 0.000 |,Ls= [ 0.015 0.000 0.034 |,
0.230  0.000 —0.378 0.000 0.051 0.018
[ 0.010 0.014 0.022 0.011 0.032 0.014
Ls= | 0.003 0.011 0.008 |, Ljp = | 0.003 0.005 0.009 [,
| 0.001 0.002 0.054 0.008 0.004 0.001
0.006 0.010 0.080 0.020 0.080 0.020
Lis = | 0.001 0.000 0.002 {,L;g= | 0.001 0.003 0.007 |,
0.002 0.003 0.000 0.003 0.000 0.001

13
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including L, = 0, £k € N — {4,8,10, 13,18}. Hence, wsL = 0 and 7wse = 1 yield 7, =
[ 0.332192 0.414449 0.253359 ] with p* = 2.035615. Thus, we have p = 0.774251.
Further, we have 7w,Q7, [ 0.186937,0.233226, 0.142575,0.145255, 0.181223,0.110784 } .
The characteristic equation G/(z) = 0 has m(Ny + M) = 168 roots in total. Out of these
168 roots, we have mM, — 1 = 107 roots inside of |z| = 1, one root at z = 1 and other
mNy = 60 roots outside of |z| = 1. Using these 107 inside roots 71,72, - . . , Y107 in (6) and
z = 11n (7), and then solving these m M, linearly independent simultaneous equations, we
get the vectors w(n),0 < n < My — 1. Further, other 60 roots ay, g, s, . . . , (g outside
the unit disk are used in (8) for partial fractions.

Example 2: We have presented the system-length distributions at various time epochs as
well as the sojourn-time distribution of an arbitrary customer in an arriving batch in Tables
5 - 8. For case (ii), we choose the following rate matrices D,,, n > 0, of order m, = 3 of
the arrival process BMAP with maximum arrival batch size Ny = 15:

[ 0415 0.059  0.024 0.000 0.006 0.008
Do=| 0222 —0328 0000 |,D;=| 0025 0.000 0.024 |,
0.450  0.000 —0.547 0.000 0.031 0.028
[ 0.020 0.024 0.012 0.011 0.022 0.013
D, = | 0.003 0.021 0.006 |,Ds= | 0.003 0.004 0.008 |,
| 0.001 0.002 0.014 0.007 0.003 0.002
0.005 0.011 0.080 0.020 0.070 0.030
Dy = | 0.001 0.000 0.002 |,Dy;= | 0.001 0.003 0.005 |,

0.002 0.004 0.000

0.002 0.000 0.001

including D, = 0, k¥ € N — {1,2,5,10,15}. Hence, w,D = 0 and 7,e
T, = [ 0.479067 0.331818 0.189115 } with \* = 1.657368.

Again, we choose the following rate matrices L,,, n > 0, of order my = 2 of the service
process BMSP with maximum service batch size My = 8:

1 yield

—0.792  0.069 0.070 0.089 0.065 0.042
LU = ) Ll = s L2 = ’
0.230 —-0.910 0.061 0.088 0.062 0.034
0.091 0.072 0.085 0.075 0.078 0.056
L4 - s LG = ’ LS = s
0.089 0.095 0.084 0.063 0.037 0.067

including L, = 0, k¥ € N — {1,2,4,6,8}. Hence, w;L = 0 and 7wse = 1 yield 7w, =
[ 0.582816 0.417184] with ©* = 2.946029. Thus, we have p = 0.562577. Further,

14
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we have T, @ T, = [ 0.279208 0.199859 0.193389 0.138429 0.110219 0.078896 }
The characteristic equation G(z) = 0 has m(Ny + My) = 138 roots in total. Out of these
138 roots, we have mMy — 1 = 47 roots inside of |z| = 1, one root at z = 1 and other
mNy = 90 roots outside of |z| = 1. Using these 47 inside roots 71,7, . .., V47 in (6) and
z = 1 1in (7), and then solving these m M linearly independent simultaneous equations, we
get the vectors 7w(n),0 < n < My— 1. Further, other 90 roots o, v, ig, . . ., (rgg outside the
unit disk are used in (8) for partial fractions. It is found that the mean sojourn time W using
Little’s rule given in Tables 1 and 5 match with the results obtained from the sojourn-time
distribution given in Tables 4 and 8, respectively. Moreover, one can observe from Tables 1
and 5 that Y mw(n) = w, ® m,, where Y, m(n) is calculated through roots whereas
™, ® 7, 1s independent of the roots. This fact confirms the correctness of our analytical and
numerical results.

Example 3: For the purpose of comparative study between the roots method and the MGM,
we choose the rate matrices D,,, n > 0, of order m,, = 3 of the arrival process BMAP with
maximum arrival batch size Ny = 10 such that each entry of D,,, n > 0, is a function of ¢,
(0 > 0), and they are given by

[ 0] [ 52 0% ] [ 07 07 ]
R 3 4 6 2 6 3
b b 5§ 5 4 5§ 5 6
D,=| ¢ _ O Ip;=| 2 2 2l p,=|2 2 2],
0 6 [ ! 2 6 3 2 1 2 6
# o & 0 ¢ ¢ &
L 3 % ] L2 3 6 L1 3 6
[ 52 0% 6] [ 07 0% 6] [ 52 0% 6]
1 2 6 1 3 4 2 6 4
oo |8 0 a8 8 6| g |6 5 9
* 2 3 4 |”7° 6 3 4 | " 3 14 2|
& ¢ ¢ ¢ 5 ¢ ¢ &
L3 6 2. L1 2 3. L4 1 6
T8 52 82T T8 52 82
3 4 2 6 3 6
2
De=| 2 2 9| p,=|¢ 9 &
2 6 4 6 3 3
5 53 5 53§
L2 6 4 | L3 2 4 .

including D, =0, k e N—{1,2,4,5,7,8,10}.

Similarly, we choose the rate matrices L,,, n > 0, of order m, = 4 of the service process
BMSP with maximum service batch size M, = 15 such that each entry of L,,, n > 0, is a
function of 7, (n > 0), and they are given by

15
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-1 01 1 17 T 11 1 17
2n 4n 5n 7 5n 4n 3n 4n
1 1 1 1 1 1 1 1
L= | 20 o0 An ong g |2 30 oon
1 1 1 1 1 1 1 1
2 4n Bn A 5n 3n 4y 5
1 1 1 1 1 1 1 1
L n 2np n  on L 3n Sn n  on
i 1 1 17
dn 4n By 3
1 1 1 1
L= | 20 4 o 30
1 1 1 1
4y 3y By 3n
1 1 1 1
L n o 4n 3n

including L, = 0, k € N— {1,2,3,5,6,8,9,12, 13, 15}.

All the stationary probabilities at random epoch carried out by the MGM also match with
those obtained using the method of roots. We found during the computational work that both
the methods give the same results, but from computation time point of view one method
slightly differ from the other. We have recorded the computation times to calculate 7 (n),
n > 0, for different traffic intensity (p) by the roots method and the MGM when m, = 3
and m,; = 4. These computation times are given in Table 9. Figure 1 graphically displays
the results given in Table 9. It is observed from Figure 1 that the computation time re-
quired in the roots method is higher as compared to the MGM for different p. Further, in
both the methods, we found the similar effect for different lower orders of input matrices
Dy and Li, £ > 0 during the computational work. Based on computation time, Gupta et
al. [11], and Bank and Samanta [5] have shown that the roots method is numerically more
efficient than the matrix-analytic method developed by Neuts [25] for BM AP/G/1 and
BMAP/G@Y) /1 queue, respectively. However, we have found in this work that the MGM
is numerically more efficient than the roots method. Hence, it concludes that all the methods
give the same results but computation time depends on respective problems. Authors sug-
gest the reader and practitioner to use the MGM instead of the roots method for the problem
considered in this paper.

Example 4: We have demonstrated the numerical stability (especially when some of the
roots gets close) of the root finding method based on the mathematical software package
Maple. For this purpose, we choose the rate matrices D,,, n > 0, of order m, = 3 of the
arrival process BMAP with maximum arrival batch size Ny = 10 and they are given by
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—0.588700  0.042050  0.028033 0.028033 0.021025 0.014017 ]
Do= | 0.048333 —2.030000 0.072500 |, D;= | 0.145000 0.048333 0.096667 |,
0.008130  0.004065 —0.170723 0.012195 0.008129 0.004065
[0.042050 0.014017 0.028033 | [0.021025 0.042050 0.014017 |
D, = | 0.072500 0.145000 0.048333 |, Dy = | 0.145000 0.096667 0.072500 |,
| 0.006097 0.008129 0.004064 | | 0.008130 0.004065 0.012194 |
[0.021025 0.028033 0.021025 | [ 0.042050 0.014017 0.021025 |
D, = | 0.048333 0.096667 0.072500 |, D7 = | 0.096667 0.072500 0.145000 |,
| 0.006097 0.012195 0.008130 | | 0.006097 0.006097 0.004065 |
0.028033 0.021025 0.042050 0.014017 0.028033 0.014017
Dg = | 0.145000 0.048333 0.072500 |, Dyo = | 0.048333 0.096667 0.096667 |
0.012195 0.004065 0.006097 0.008130 0.012195 0.006097

including D, = 0, £k € N — {1,2,3,4,7,8,10}. Hence, w,D = 0 and 7w,e = 1 yield
T, = [ 0.241387 0.064296 0.694317 | with A* = 1.776913.

Similarly, we choose the rate matrices L,, n > 0, of order m, = 2 of the service process
BMSP with maximum service batch size M, = 10 and they are given by

[ —1.747578  0.194176 0.194175 0.048544
ko= | 0.009426 —0.339337] T [0.037704 0.012568 ] ’

[ 0.097087 0.038835 0.097087 0.064725
=1 goomsar 0.087704 ] T [ 0.009426 0.018852 ] ’

[ 0.048545 0.038835 | [ 0.194175 0.038835 |
M= ooomsar o.oi2ses |1 | 0.012568 0.000426 |

[ 0.048545 0.064725 | [ 0.064725 0.038835 |
Lo = | 0.018852 0.007541 | b= | 0.037704 0.012568 |

[ 0.194175 0.064725 | [ 0.064725 0.038835 |
= goomsar 0000426 | | 0.087704 0007541 |
. 0.048544 0.064725

0.012568 0.012568 |’

including L, =0, k € N—{1,2,3,4,5,6,7,8,9,10}. Hence, ;L = 0 and 7w,e = 1 yield
T, = [ 0.222028 0.777972 ] with p* = 3.126994. Thus, we have p = 0.568249.

The characteristic equation G(z) = 0 has m(Ny + My) = 120 roots in total. Out of these
120 roots, we have mMy — 1 = 59 roots v, e, - . ., V59 inside of |z| = 1, one root at z = 1
and other m Ny = 60 roots oy, aa, . . . , agp outside of |z| = 1. The accuracy of these roots is
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also verified by back substituting into the characteristic equation G(z) = 0. All the roots of
G(z) = 0 and accuracy of these roots are reported in Table 10 and Table 11 up to 30 decimal
places. Three roots 71, 72 and 3 inside the unit disc are very closed. The first 7 decimals
of roots 1, 72 and ~y3 are same. One may remark here that we can obtain close roots how-
ever close they may get using the mathematical software package Maple. Therefore, Maple
identifies these roots as distinct roots and hence calculates these roots accurately. For visual
illustration purpose, we have also plotted all 120 roots of G(z) = 0 in Figure 2. Finally, we
have not found any effect in numerical results carried out by the roots method and all the
results are perfectly matched with those obtained using the MGM.

Table 1. System-length distribution at random epoch.

7T11(7'L)

7r12(n)

71'13(77/)

721(77/)

92 (n)

’/T23(Tl)

m(n)e

N DD —
SO OV NN A WNDRF~O|S

—
o
=

150
200
300
350

0.025960
0.001635
0.001669
0.003893
0.001436
0.003972
0.002156
0.003403
0.002233
0.004304
0.008003
0.003462
0.001212
0.000306
0.000077
0.000020
0.000001
0.000000

0.035912
0.002079
0.002143
0.004840
0.001819
0.004860
0.002627
0.004169
0.002752
0.005224
0.009759
0.004192
0.001494
0.000378
0.000096
0.000024
0.000002
0.000000

0.028303
0.001827
0.001993
0.003154
0.001558
0.003066
0.002237
0.002743
0.001890
0.003054
0.005609
0.002227
0.000802
0.000202
0.000051
0.000013
0.000000
0.000000

0.015495
0.001239
0.000950
0.002118
0.000899
0.004372
0.001412
0.003155
0.001618
0.005981
0.004077
0.002288
0.000981
0.000248
0.000063
0.000016
0.000001
0.000000

0.021967
0.001609
0.001249
0.002670
0.001175
0.005432
0.001734
0.003903
0.002009
0.007336
0.004957
0.002765
0.001208
0.000306
0.000077
0.000020
0.000001
0.000000

0.017660
0.001610
0.001165
0.001854
0.001047
0.003591
0.001541
0.002580
0.001427
0.004524
0.002923
0.001586
0.000650
0.000164
0.000041
0.000010
0.000000
0.000000

0.145297
0.009999
0.009169
0.018528
0.007935
0.025293
0.011707
0.019952
0.011928
0.030423
0.035328
0.016521
0.006346
0.001604
0.000405
0.000102
0.000005
0.000000

Sum

0.186937

0.233226

0.142575

0.145255

0.181223

0.110784

1.000000

Ly = 33.125126, W, = 21.017467
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Table 2. System-length distribution at pre-arrival epoch.

3

m:(n)

() ma(n)  mn(n)  mp(n)  mp(n)  w(n)e

[e>RENoRNe BN e NV NN N S =)

._.
S NN =
(= el

150
200
300
350

0.002560
0.002732
0.002894
0.002686
0.002784
0.002973
0.003094
0.003167
0.003190
0.003556
0.002769
0.002328
0.001055
0.000266
0.000067
0.000017
0.000001
0.000000

0.003563 0.002823 0.003438 0.004783 0.003788 0.020955
0.003783 0.003025 0.003668 0.005078 0.004056 0.022342
0.003993 0.003220 0.003887 0.005360 0.004319 0.023673
0.003637 0.002869 0.004100 0.005579 0.004408 0.023278
0.003761 0.002969 0.004271 0.005797 0.004593 0.024176
0.003952  0.003027 0.003987 0.005292 0.004067 0.023298
0.004096 0.003168 0.004172 0.005512 0.004258 0.024300
0.004140 0.003133 0.004041 0.005257 0.003963 0.023700
0.004166 0.003155 0.004120 0.005351 0.004025 0.024007
0.004590 0.003347 0.003403 0.004248 0.002968 0.022112
0.003404 0.002247 0.003663 0.004497 0.002946 0.019526
0.002818 0.001658 0.003034 0.003673 0.002138 0.015649
0.001299 0.000698 0.001346 0.001657 0.000890 0.006946
0.000329 0.000176 0.000340 0.000420 0.000224 0.001755
0.000083  0.000044 0.000086 0.000106 0.000057 0.000443
0.000021 0.000011 0.000022 0.000027 0.000014 0.000112
0.000001  0.000000 0.000001 0.000002 0.000000 0.000005
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Sum

0.145114

0.181047 0.110677 0.187078 0.233401 0.142682 1.000000

Table 3.

System-length distribution at post-departure epoch.

i (n)

mh(n)  mh(n)  mh(n)  mh(n)  wh(n)  wh(n)e

N DD —
SO OV A WNDR~RO|S

—_
=)
=)

150
200
300
350

0.003672
0.003387
0.003939
0.002810
0.002784
0.003151
0.003889
0.002783
0.002686
0.002843
0.002701
0.002082
0.000918
0.000232
0.000059
0.000015
0.000000
0.000000

0.008713 0.009515 0.002309 0.005749 0.006286 0.036244
0.008385 0.011099 0.003574 0.008793 0.012784 0.048022
0.009785 0.013749 0.002565 0.006396 0.008690 0.045125
0.006885 0.009078 0.002289 0.005670 0.007579 0.034311
0.006863 0.009269 0.002311 0.005660 0.007490 0.034377
0.007468 0.010000 0.003035 0.007266 0.009838 0.040758
0.009038 0.013084 0.002778 0.006533 0.009618 0.044941
0.006825 0.009560 0.002161 0.005384 0.007152 0.033866
0.006473 0.008707 0.002231 0.005356 0.007198 0.032651
0.006816 0.009081 0.002286 0.005530 0.007123 0.033679
0.006475 0.008365 0.002216 0.005289 0.007039 0.032084
0.004911 0.006656 0.001705 0.004007 0.005482 0.024843
0.002145 0.002949 0.000744 0.001739 0.002390 0.010885
0.000542 0.000745 0.000188 0.000439 0.000604 0.002749
0.000137 0.000188 0.000047 0.000111 0.000153 0.000695
0.000035 0.000048 0.000012 0.000028 0.000039 0.000176
0.000002 0.000003 0.000000 0.000002 0.000002 0.000009
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Sum

0.133480

0.315799 0.429937 0.107836 0.255765 0.348950 1.000000
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Table 4. Sjourn-time distribution.

x

WH(.’IJ)

W12 (CU)

ng(l‘)

W21 ((L’)

W22 (l‘)

WQg(I)

W(x)e

0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10.5
20.0
50.5
100.0
150.5
200.0
250.5
285.0
300.5

0.000000
0.001425
0.002846
0.004257
0.005652
0.007028
0.008383
0.009715
0.011022
0.012305
0.013561
0.025712
0.040613
0.060534
0.065963
0.066468
0.066512
0.066516
0.066517
0.066517

0.000000
0.003731
0.007466
0.011184
0.014870
0.018511
0.022099
0.025628
0.029094
0.032494
0.035825
0.067990
0.107303
0.159765
0.174058
0.175388
0.175504
0.175515
0.175516
0.175516

0.000000
0.004172
0.008331
0.012459
0.016544
0.020574
0.024542
0.028442
0.032272
0.036028
0.039710
0.075303
0.118945
0.177285
0.193184
0.194662
0.194792
0.194804
0.194805
0.194805

0.000000
0.001893
0.003776
0.005641
0.007481
0.009292
0.011072
0.012817
0.014528
0.016203
0.017842
0.033572
0.052681
0.078113
0.085039
0.085683
0.085739
0.085744
0.085745
0.085745

0.000000
0.004953
0.009897
0.014806
0.019661
0.024446
0.029152
0.033771
0.038298
0.042732
0.047069
0.088658
0.139049
0.206019
0.224251
0.225946
0.226095
0.226109
0.226110
0.226110

0.000000
0.005579
0.011122
0.016605
0.022012
0.027332
0.032556
0.037680
0.042699
0.047611
0.052416
0.098511
0.154480
0.228957
0.249238
0.251124
0.251289
0.251305
0.251306
0.251306

0.000000
0.021753
0.043438
0.064952
0.086219
0.107182
0.127803
0.148053
0.167913
0.187372
0.206424
0.389746
0.613071
0.910673
0.991732
0.999271
0.999932
0.999994
0.999999
0.999999

W =21.017467

Table 5. System-length distribution at random epoch.

7T11(7L)

7T12(TL)

T21 ('I’L)

ng(n)

31 (TL)

7T32(7’L)

m(n)e

NN = 5
SO OO VO NN A WND=O|S

—
(o
=}

155

0.117391
0.009346
0.010036
0.006211
0.006432
0.008388
0.006145
0.006130
0.005520
0.006470
0.008954
0.003296
0.000343
0.000008
0.000000

0.087516
0.006687
0.006886
0.004441
0.004701
0.005777
0.004442
0.004394
0.003916
0.004774
0.005917
0.002215
0.000232
0.000005
0.000000

0.068588
0.005810
0.007872
0.004165
0.003827
0.006767
0.003698
0.004658
0.003428
0.004694
0.004867
0.002681
0.000286
0.000007
0.000000

0.051248
0.004290
0.005362
0.002975
0.002867
0.004631
0.002727
0.003375
0.002500
0.003395
0.003413
0.001806
0.000194
0.000005
0.000000

0.023642
0.004639
0.004388
0.002226
0.002895
0.003738
0.002923
0.002310
0.002509
0.002896
0.009904
0.001957
0.000194
0.000005
0.000000

0.018123
0.003333
0.003145
0.001631
0.002158
0.002647
0.002171
0.001711
0.001760
0.002365
0.006649
0.001306
0.000131
0.000003
0.000000

0.366507
0.034106
0.037688
0.021649
0.022879
0.031947
0.022106
0.022578
0.019633
0.024595
0.039703
0.013262
0.001381
0.000033
0.000000

Sum

0.279208

0.199859

0.193389

0.138429

0.110219

0.078896

1.000000

Ly =9.994732, Wy = 6.030486
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Table 6. System-length distribution at pre-arrival epoch.

3

m:(n)

() my(n) () m(n)  mp(n)  w(n)e

SO OO0 IO N kW = O

._.
S N =
(= e i)

155

0.005503
0.004934
0.003819
0.003883
0.003996
0.003297
0.003319
0.003365
0.003426
0.003562
0.003380
0.001570
0.000176
0.000004
0.000000

0.004109 0.011150 0.008326 0.012633 0.009434 0.051155
0.003671 0.011243 0.008360 0.011764 0.008748 0.048719
0.002809 0.009569 0.007054 0.011457 0.008450 0.043157
0.002859 0.009858 0.007261 0.011802 0.008702 0.044364
0.002951 0.010195 0.007521 0.012273 0.009056 0.045991
0.002404 0.009083 0.006647 0.011788 0.008639 0.041857
0.002425 0.009317 0.006819 0.012104 0.008876 0.042859
0.002463 0.009495 0.006958 0.012451 0.009131 0.043862
0.002505 0.009755 0.007138 0.012798 0.009374 0.044997
0.002608 0.010106 0.007407 0.013291 0.009745 0.046719
0.002445 0.009971 0.007231 0.008390 0.006008 0.017469
0.001088 0.004368 0.003030 0.004384 0.003028 0.037425
0.000120 0.000493 0.000335 0.000477 0.000324 0.001925
0.000003 0.000012 0.000008 0.000011 0.000008 0.000045
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Sum

0.089037

0.063733  0.241517 0.172880 0.252261 0.180571 1.000000

Table 7.

System-length distribution at post-departure epoch.

<
=

i (n)

mh(n)  mh(n)  mh(n)  mh(n)  mh(n)  w(n)e

S O 0NN B W= O

—
S N =
S OO

155

0.012118
0.012209
0.010725
0.010876
0.011018
0.009750
0.009961
0.010147
0.009247
0.010602
0.007422
0.003755
0.000407
0.000010
0.000000

0.011283 0.007926 0.007256 0.005658 0.005317 0.049558
0.011768 0.009274 0.008999 0.005182 0.005089 0.052520
0.009967 0.006527 0.006122 0.006343 0.005913 0.045595
0.009916 0.008040 0.007188 0.004863 0.004440 0.045323
0.010361 0.007158 0.006947 0.007309 0.006615 0.049407
0.009036 0.007145 0.006494 0.004510 0.004240 0.041174
0.009317 0.006569 0.006277 0.006863 0.006279 0.045267
0.009363 0.008758 0.008085 0.005087 0.004706 0.046145
0.008420 0.006405 0.005947 0.006145 0.005116 0.052520
0.010038 0.009370 0.008449 0.007163 0.007366 0.052987
0.007034 0.005751 0.005512 0.003807 0.003593 0.033119
0.003511 0.003071 0.002864 0.002071 0.001943 0.017215
0.000382 0.000340 0.000318 0.000230 0.000215 0.001891
0.000009 0.000008 0.000007 0.000005 0.000005 0.000044
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Sum

0.220740

0.206288 0.173893 0.162351 0.122421 0.114307 1.000000
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Table 8. Sjourn-time distribution.

x

WH(.’IJ)

W12 (CU)

ng (l‘)

WQQ ((L’)

W31 (l‘)

ng (I)

W(x)e

0.0
0.5
1.0
1.5
2.0
2.5
3.0
35
4.0
4.5
5.0
6.0
7.5
9.0
10.5
20.0
50.5
60.0
90.5
100.0

0.000000
0.005708
0.011091
0.016175
0.020974
0.025495
0.029744
0.033727
0.037449
0.040918
0.044143
0.049900
0.056980
0.062485
0.066729
0.078002
0.080458
0.080466
0.080468
0.080468

0.000000
0.005147
0.009997
0.014574
0.018892
0.022959
0.026780
0.030359
0.033704
0.036820
0.039716
0.044884
0.051237
0.056176
0.059982
0.070092
0.072294
0.072301
0.072303
0.072303

0.000000
0.013739
0.027174
0.040231
0.052838
0.064928
0.076446
0.087356
0.097633
0.107269
0.116265
0.132397
0.152306
0.167801
0.179738
0.211352
0.218218
0.218241
0.218246
0.218246

0.000000
0.012397
0.024510
0.036277
0.047631
0.058513
0.068876
0.078686
0.087924
0.096582
0.104663
0.119147
0.137014
0.150915
0.161621
0.189969
0.196127
0.196147
0.196152
0.196152

0.000000
0.016009
0.031546
0.046441
0.060584
0.073910
0.086390
0.098020
0.108814
0.118800
0.128014
0.144298
0.164037
0.179192
0.190780
0.221322
0.227957
0.227979
0.227983
0.227983

0.000000
0.014466
0.028479
0.041896
0.054623
0.066606
0.077821
0.088267
0.097959
0.106922
0.115191
0.129801
0.147506
0.161097
0.171489
0.198876
0.204825
0.204845
0.204849
0.204849

0.000000
0.067466
0.132798
0.195596
0.255543
0.312411
0.366057
0.416414
0.463482
0.507311
0.547993
0.620428
0.709080
0.777666
0.830339
0.969613
0.999879
0.999978
1.000000
1.000000

W = 6.030486

Table 9. Computation time to get 7w(n), n > 0, for different p.

5 0 p Time (Second)
Roots method | MGM
0.35 | 4.0 | 0.105963 19054.76 1275.79
0.40 | 5.5 | 0.204190 18873.11 1399.18
0.45 | 6.5 | 0.322783 18920.46 1815.48
0.48 | 7.0 | 0.406492 19109.17 2135.43
0.51 | 7.5 | 0.503497 19187.34 2556.84
0.54 | 8.0 | 0.614643 19067.51 3012.96
0.57 | 8.5 | 0.740728 19145.84 4544.60
0.59 | 8.8 | 0.830315 19221.37 5241.85
0.61 | 9.0 | 0916410 19404.07 6342.23
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Figure 1. Computation time to get 7w(n), n > 0, for different p.
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Figure 2. Location of all roots of G(z) = 0.
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Table 10. The roots of G(z) = 0in |z| < 1 and their accuracy.

Roots

1G]

V24
V25
726
Va7
V28
Y29
730

>
=

3
Y3:
V34
Y3
V36
REY

&%

&

—0.110400923414066008759219539984
—0.110400926619440682553371298224
—0.110400937630677526927125064109
0.320400084706996544771508990594 — 0.4484796421182754531261915707974
0.320400084706996544771508990594 + 0.4484796421182754531261915707974
0.534289368244009405053690490891 — 0.174280143043974380915847249993:
0.534289368244009405053690490891 + 0.174280143043974380915847249993
0.342905443731415114392731765870 — 0.483087168881854594723545070216
0.342905443731415114392731765870 + 0.483087168881854594723545070216
0.012948559373001676316748782166 — 0.6063616694334204268862923202741
0.012948559373001676316748782166 + 0.6063616694334204268862923202741
0.584540238643891927378272258587 — 0.1881371757562153120365050159097
0.584540238643891927378272258587 +- 0.1881371757562153120365050159094
0.355534381073907957424412863835 — 0.502403835658666519663103500442i
0.355534381073907957424412863835 +- 0.502403835658666519663103500442i
—0.223434443737494889747625346811 — 0.5884959781755063785813705981817
—0.223434443737494889747625346811 +- 0.58849597817550637858137059818114
—0.640071681385930657412212340735 — 0.056965621936319161263743857009%
—0.640071681385930657412212340735 + 0.056965621936319161263743857009:
0.615127658043940124937050815342 — 0.194644212087934559518578277393:
0.615127658043940124937050815342 + 0.1946442120879345595185782773934
—0.529273257260324729581546137657 — 0.3805284984359295978168708650057
—0.529273257260324729581546137657 + 0.380528498435929597816870865005¢
0.016358368718113427481296631814 — 0.6528428130318113052190827681414
0.016358368718113427481296631814 + 0.65284281303181130521908276814114
—0.471596637789278595535930119479 — 0.4526383232066081879536038306221
—0.471596637789278595535930119479 + 0.452638323206608187953603830622:
0.124503176708051754930169679936 — 0.652865015896841998465172600065¢
0.124503176708051754930169679936 + 0.6528650158968419984651726000657
0.015084753071278079545718095598 — 0.678067815269462670357808134190i
0.015084753071278079545718095598 + 0.6780678152694626703578081341904
—0.240653849473855393028212011443 — 0.634718428692994117058897512030i
—0.240653849473855393028212011443 +- 0.634718428692994117058897512030i
—0.687833860398420622671893260326 — 0.0755433940880176055518681006841
—0.687833860398420622671893260326 + 0.0755433940880176055518681006847
—0.501255415530992723045502944800 — 0.4920432837592557051647828615171
—0.501255415530992723045502944800 + 0.49204328375925570516478286151 74
—0.580174182760349065804893157044 — 0.4038402896493399390734374198661
—0.580174182760349065804893157044 + 0.4038402896493399390734374198667
0.138469042798308448991519733374 — 0.6942807740230437504785491384761
0.138469042798308448991519733374 + 0.6942807740230437504785491384 7617
—0.251416877563965724773465905037 — 0.6670300198617027255446671354917
—0.251416877563965724773465905037 + 0.667030019861702725544667135491%
—0.716786564835662238755589951188 — 0.0867147987757631024969955622761
—0.716786564835662238755589951188 + 0.0867147987757631024969955622761
—0.514978630616171132393271122059 — 0.5144807432471838180024723553311
—0.514978630616171132393271122059 +- 0.5144807432471838180024723553314
0.541354201205154565368734693881 — 0.491397475595220674574637133772i
0.541354201205154565368734693881 +- 0.491397475595220674574637133772i
0.152926921894043504472507911658 — 0.717352723559405107009099227323:
0.152926921894043504472507911658 + 0.717352723559405107009099227323
—0.615311495969519174302685320755 — 0.4162662154816318735569187125741
—0.615311495969519174302685320755 + 0.416266215481631873556918712574i
0.578617995650982326004796359876 — 0.522951414239860490188882322652i
0.578617995650982326004796359876 + 0.522951414239860490188882322652i
0.601688973920937729418538173776 — 0.5372334108186268488708807753361
0.601688973920937729418538173776 + 0.5372334108186268488708807753361
0.836113067283192371891396436700
0.923850396491094858988057241037
1.000000000000000000000000000000

8.710000000000000000000000000000 x 10~%
1.432900000000000000000000000000 x 10523
8.187000000000000000000000000000 x 10523
5.846366392897386652806509325200 x 102!
5.846366392897386652806509325200 x 1052
2.373785162983373270203501468228 x 1020
2.373785162983373270203501468228 x 10520
2.965889411289638762750906457704 x 10520
2.965889411289638762750906457704 x 107520
2.778160542517296641479044551327 x 107520
2.778160542517296641479044551327 x 107520
4.873704956190926418480916666996 x 10720
4.873704956190926418480916666996 x 10720
1.478276022940235610178880719663 x 10752
1.478276022940235610178880719663 x 10~520
5.636922919465903074625929111898 x 107520
5.636922919465903074625929111898 x 10520
1.118209729880758996787562196920 x 10~51
1.118209729880758996787562196920 x 10~519
2.268540059156990068601507141902 x 10519
2.268540059156990068601507141902 x 10519
1.019306627075484092283009434320 x 10-51
1.019306627075484092283009434320 x 10-51
1.325634187851233716061141821111 x 107519
1.325634187851233716061141821111 x 10751
7.785788335165553420158100924347 x 10752
7.785788335165553420158100924347 x 10752
3.002043470704579920607140165009 x 107°19
3.002043470704579920607140165009 x 107°19
3.816895236969440323284286425145 x 10719
3.816895236969440323284286425145 x 10751
5.778867449595984633618545064892 x 107°19
5.778867449595984633618545064892 x 10519
4.064556679393215202947029909553 x 10519
4.064556679393215202947029909553 x 10519
1.779843468538736414237794948599 x 10518
1.779843468538736414237794948599 x 10518
2.131930639115635018786985157267 x 10518
2.131930639115635018786985157267 x 10518
1.713420555497102701897050868450 x 10~51
1.713420555497102701897050868450 x 10~519
8.898770982557085674850197844482 x 10519
8.898770982557085674850197844482 x 10519
1.748009739675382930044378287587 x 107518
1.748009739675382930044378287587 x 107518
2.430680478984434515014623959482 x 1078
2.430680478984434515014623959482 x 107°!8
4.651760759110468269138666247723 x 10718
4.651760759110468269138666247723 x 107518
1.390969809161938640241822774457 x 107518
1.390969809161938640241822774457 x 10518
1.545894774070990900443706491259 x 10~517
1.545894774070990900443706491259 x 10~517
4.158773972470732870088570729015 x 1057
4.158773972470732870088570729015 x 10517
1.792840458246354948093019116693 x 10516
1.792840458246354948093019116693 x 10516
7.239693000000000000000000000000 x 10~>15
1.040653584000000000000000000000 x 10512
0.000000000000000000000000000000
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Table 11. The roots of G(z) = 0in |z| > 1 and their accuracy.

Roots

|G(a)|

1.045036369573429331975596299255
1.212764510325487037122480191119
—1.266632708027585645656606820224
—1.016867114746705890865548374704 + 0.756728479217668982704328321372
—1.016867114746705890865548374704 — 0.756728479217668982704328321372
0.987617452684484643273029153270 + 0.801884066089746787414546923840¢
0.987617452684484643273029153270 — 0.801884066089746787414546923840¢
—0.299301103076140646724595419267 + 1.2450521678994880489253831801307
—0.299301103076140646724595419267 — 1.2450521678994880489253831801304
—1.102394490967652034942766413004 + 0.8104543615661699970295525784 72
—1.102394490967652034942766413004 — 0.810454361566169997029552578472i
—1.372033654593128141664094952592
1.067507481736167942060350792971 +- 0.8646824544194410585175513162067
1.067507481736167942060350792971 — 0.8646824544194410585175513162064
—0.358007317679357592714133355739 + 1.339341196313958543633905314689:
—0.358007317679357592714133355739 — 1.3393411963139585436339053146897
0.438003522211068129445294198806 + 1.383052052988534787243543907566¢
0.438003522211068129445294198806 — 1.3830520529885347872435439075667
0.446266209896552183639971351569 + 1.451855573481970684069228484090¢
0.446266209896552183639971351569 — 1.4518555734819706840692284840902
—1.422736561049765739544921445253 + 0.5984696011784513222412697490741
—1.422736561049765739544921445253 — 0.5984696011784513222412697490744
1.469975182595085584064074583917 +- 0.5436848446093731369846715276157
1.469975182595085584064074583917 — 0.543684844609373136984671527615¢
0.154232714591657924823095852578 + 1.562115683977569710103026975039¢
0.154232714591657924823095852578 — 1.562115683977569710103026975039:
0.807762341835651198146358835125 + 1.3465635935844695971724794258401
0.807762341835651198146358835125 — 1.3465635935844695971724794258401
—0.926477813723466196082344342384 + 1.2999620861875229106587505308741
—0.926477813723466196082344342384 — 1.2999620861875229106587505308741
—0.374044661995512970856249962762 + 1.5812687126334460662768038254707
—0.374044661995512970856249962762 — 1.5812687126334460662768038254707
—1.619260861673811190115166170056 + 0.424160969043128740836 7777379231
—1.619260861673811190115166170056 — 0.424160969043128740836 7777379234
0.870751027018977877182554517706 + 1.5034516941032003714790743554 741
0.870751027018977877182554517706 — 1.5034516941032003714790743554741
—1.599956291223531516039430925229 + 0.6805472768226948041492600868037
—1.599956291223531516039430925229 — 0.6805472768226948041492600868037
1.646837029929016729850412661768 + 0.628066799888289603186718850378:
1.646837029929016729850412661768 — 0.628066799888289603186718850378i
0.198355150251332330178314022519 + 1.760692224171129529482236276596¢
0.198355150251332330178314022519 — 1.7606922241711295294822362765967
1.745426787619964765998693408074 + 0.4845053108626025749635263095167
1.745426787619964765998693408074 — 0.484505310862602574963526309516
1.265305147723147003959128525951 +- 1.2979760747601524904675594076367
1.265305147723147003959128525951 — 1.297976074760152490467559407636i
—0.393495690140639291723432142498 + 1.7855776135384948608164646873241
—0.393495690140639291723432142498 — 1.7855776135384948608164646873241
—1.056456570807461805009088819016 + 1.5229734707736422098871231506557
—1.056456570807461805009088819016 — 1.5229734707736422098871231506557
—1.795268318451265097470621551956 + 0.469903416856177890958571812212i
—1.795268318451265097470621551956 — 0.4699034168561778909585718122124
1.881819598610848498033222464966 + 0.508095668418690646962737128518i
1.881819598610848498033222464966 — 0.508095668418690646962737128518i
1.352232378224437245006709904314 + 1.418238898649134957133011104968:
1.352232378224437245006709904314 — 1.418238898649134957133011104968:
—1.153738938887740895284719293530 + 1.778392218757731268734438778137i
—1.153738938887740895284719293530 — 1.778392218757731268734438778137i
—1.199996157661561624931617934489 + 1.759121968763797025197347885903
—1.199996157661561624931617934489 — 1.759121968763797025197347885903

2.744508015392000000000000000000 x 10~7%
3.028075780077619000000000000000 x 10~
3.792438479693385000000000000000 x 10~
8.442234275118088811471707123724 x 1077
8.442234275118088811471707123724 x 1077
3.079861997793776079431873811687 x 10720
3.079861997793776079431873811687 x 1020
3.166880729857330100122337325133 x 10774
3.166880729857330100122337325133 x 1054
1.319709114275801772175548344401 x 100
1.319709114275801772175548344401 x 10~°1
7.968673545039156538000000000000 x 10502
2.919086076084383386959235782527 x 107502
2.919086076084383386959235782527 x 107502
1.475200285064385974307014840101 x 10750
1.475200285064385974307014840101 x 100
3.536970239959074204371043200503 x 1059
3.536970239959074204371043200503 x 1059
1.634784756774294014078653140194 x 1049
1.634784756774294014078653140194 x 10498
1.718063696005108404899754220976 x 10747
1.718063696005108404899754220976 x 10~47
9.986808402355485774854269629661 x 10497
9.986808402355485774854269629661 x 1047
7.147169471963229719515437901246 x 10~497
7.147169471963229719515437901246 x 10~4°7
5.119216009197566309562149085159 x 10~497
5.119216009197566309562149085159 x 10~497
2.425059157918212043163423539563 x 10196
2.425059157918212043163423539563 x 10~49
8.504336286915530619019929455144 x 10~
8.504336286915530619019929455144 x 10496
1.654244845499706078110750987111 x 104
1.654244845499706078110750987111 x 104
4.302347717866225773578489939738 x 1043
4.302347717866225773578489939738 x 107493
3.949273311264426320201931750639 x 107193
3.949273311264426320201931750639 x 10493
4.681368451996591918746992638616 x 10492
4.681368451996591918746992638616 x 10492
2.005247002010929200841314368456 x 10~
2.005247002010929200841314368456 x 10~4%2
2.759215478593746895017111501508 x 10~
2.759215478593746895017111501508 x 10~
3.491273609308094214545003896049 x 10491
3.491273609308094214545003896049 x 1049
1.129297608402388937484172543023 x 1049
1.129297608402388937484172543023 x 104
6.432496674698445604877782022097 x 1049
6.432496674698445604877782022097 x 1049
1.068352128021619212746632111800 x 10~4%°
1.068352128021619212746632111800 x 10~4%
2.142468332706899188030906590966 x 10458
2.142468332706899188030906590966 x 10488
2.126061785678492488599531218409 x 10~487
2.126061785678492488599531218409 x 10~487
2.802561441156652825139962146526 x 10~4%4
2.802561441156652825139962146526 x 10454
4.370460306438195980270664603995 x 10454
4.370460306438195980270664603995 x 10454
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5. Conclusion

The main contribution of this paper is the derivation of analytical results to evaluate the
steady-state system-length distributions at random, pre-arrival and post-departure epochs of
the BM AP/BM SP/1 queue. Analysis is based on the roots of the associated characteristic
equation of the vector-generating function of system-length distribution at random epoch.
Further, we have demonstrated a comprehensive analysis of the system-length distribution at
random epoch using the matrix-geometric method. We have also obtained the sojourn-time
distribution of an arbitrary customer in an arriving batch. We have carried out some relevant
performance measures which will be beneficial to practitioners for modeling of complex
communication systems such as traffic modeling of IP networks. We have performed exten-
sive computational works with the diversified inputs and they are appended in the forms of
tables and graphs. Finally, a comparative study is also carried out numerically to compare
the roots method with that of the matrix-geometric method.
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