
1. Introduction
Bulk queues (sometimes called batch queues), where jobs arrive in and/or are served

in batches of random size, have received a special interest over the last few decades due to
their utility in many practical real-life situations. Queueing models with correlated batch
arrival as well as batch service processes play a crucial role in recent trends of the queueing
behavior. The versatile Markovian point process pioneered by Neuts [23], and conveniently
represented as the batch Markovian arrival process (BMAP) by Lucantoni [21] have found
wide range of applications in several practical areas. The BMAP is the generalization of
batch Poisson process and includes many well-known arrival processes such as Markov-
modulated Poisson process, Markovian arrival process (MAP) and batch PH-renewal pro-
cess, see, for example, Lucantoni [22]. The use of BMAP as an arrival process in queueing
modelling readily leads to the so called matrix-analytic formalism, where scalar quantities
are replaced by matrices. The BMAP is a powerful arrival process which captures depen-
dent and non-exponentially distributed interarrival times, and correlated batch sizes. From
an analytical viewpoint, the BMAP is a tractable arrival process and it is a convenient tool
in many real-life stochastic modeling contexts. Keeping an eye on this prospect, the BMAP
beautifully represents the queueing characteristics both in analytical and application aspects.
The concept of BMAP has gained widespread use in queueing modelling of communication
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systems such as cellular networks, web browsing, traffic modeling of IP networks (Kim et
al. [17] and Klemm et al. [18]), hybrid highspeed communication systems based on laser
and radio technologies (Vishnevskii et al. [32]), wireless networks with linear topology
(Vishnevsky et al. [33]), production and manufacturing (Gold and Tran-Gia [10], and Shan-
thikumar et al. [30]) and other application areas. For more information about applications
of BMAP, see Vishnevskii and Dudin [31], Klemm et al. [19], Buchholz and Kriege [7],
Liu et al. [20], and Heyman and Lucantoni [13]. Qualitatively, the consideration of the
BMAP for modelling the arrival input greatly enhances the versatility of the queueing mod-
els. This qualitative behavior of these queueing models continues to attract the attention of
researchers and practitioners. The batch Markovian service process (BMSP) has the same
features as that of BMAP wherein arrivals are replaced with service completions. Hence,
BMSP has similar impact on analytical results and application areas for service process in
queueing system. For more details about the BMAP, its history, properties, special cases
and related research, see Lucantoni [22] and survey paper by Chakravarthy [8].

Many authors have analyzed several queueing models with various types of arrival as
well as service processes and such results are available in the literature. However, very few
authors dealt with correlated arrival and service processes. Abate et al. [1] and Alfa et
al. [3] discussed the stationary distributions of MAP/MSP/1 queue based on the pertur-
bation theory. Ozawa [26] derived the stationary sojourn-time distribution and asymptotic
properties of the MAP/MSP/1 queue through its matrix exponential form. Horváth et
al. [15] analyzed the queueing networks of MAP/MSP/1 queue by proposing the de-
composition based approximate numerical analysis. Zhang et al. [36] proposed a family of
finite approximations for the departure process of a BMAP/MSP/1 queue and the depar-
ture process approximations are derived via an exact aggregate solution technique (called
ETAQA). Samanta et al. [28] analyzed the BMAP/MSP/1 queueing model based on
roots of the associated characteristics equation of the probability vector-generating function
of system-length distribution at random epoch. Wang et al. [35] applied a matrix-analytical
approach to investigate the finite-buffer DBMAP/DMSP/1/K queue in discrete-time
and examined the bursty nature of packet loss pattern in wireless local communications.
From the above literature overview, we may see that the existing research related to the
bursty and correlated nature of arrival as well as service processes has mainly focused on
the single service. However, a few works have been done on the corresponding batch ser-
vice queue. Banik [4] discussed the BMAP/MSP (a,b)/1 queueing system based on the
use of matrix-analytic method developed by Neuts [25], where customers are served in
batches of maximum size ‘b’ with a minimum batch size ‘a’ in which the service rate for
all service batches remains the same. To the best of authors’ knowledge, very few results
on BMSP are available so far in the queueing literature, where the service rate depends on
service batch size. Using a matrix-analytical approach, Wang et al. [34] analyzed the finite-
buffer DBMAP/DBMSP/1/K queue in discrete-time to evaluate the long term packet
loss probabilities over wireless networks. Sandhya et al. [29] studied an infinite-buffer
BMAP/BMSP/1 queue by partitioning the infinitesimal generator with blocks having
groups of customers of maximum size of arrival and service batch sizes. Based on the use of
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matrix-geometric method (MGM) pioneered by Neuts [24], they determined the stationary
probability of the number of customers waiting for service and other performance measures.

The above literature survey motivates us to analyze the BMAP/BMSP/1 queueing
system in which customers are served in batches with different service rate for different
batch size. For analytical and computational purpose, we present the queueing model with a
suitable matrix structure form which makes it easy to study in a unified and algorithmically
tractable manner. We assume that the random batch sizes of arrival and service processes are
restricted to be finite. First, we obtain the system-length distribution at random epoch based
on the zeros of the characteristic polynomial of the probability vector-generating function.
A comprehensive analysis of the system-length distribution at random epoch is also carried
out using the matrix-geometric method based on reblocking the underlying Markov chain in
QBD form. See Horváth [14], He [12, p. 260], Benzi et al. [6, p. 77], and Alexander [2,
p.74] for details. We then derive the steady-state system-length distributions at pre-arrival
and post-departure epochs. In this queueing system, the determination of the sojourn-time
distribution of an arbitrary customer in an arriving batch is challenging because customers
are arrived in batches according to BMAP as well as they are also served in batches accord-
ing to BMSP. However, we overcome the challenge successfully to obtain the sojourn-time
distribution of an arbitrary customer in an arriving batch. The main advantage of our work is
to derive the sojourn-time distribution of an arbitrary customer in terms of time parameter di-
rectly without converting from the Laplace-Stieltjes transform (L.-S.T.). This is analytically
simple and easy to compute. Further, we find the L.-S.T. of the sojourn-time distribution
function to obtain the mean sojourn-time. Various performance measures such as the mean
system-length and the mean sojourn-time are obtained. To justify our analytical results,
we generate adequate outputs based on the diversified inputs but only a few of them are
appended here in the forms of tables and graphs.

This paper is organized as follows. In Section 2, we give the description of the model.
The steady-state system-length distributions at various time epochs and the sojourn-time dis-
tribution of an arbitrary customer in an arriving batch are analyzed in Section 3. Numerical
results are presented in Section 4. Section 5 concludes the paper.

2. Model Description
We consider an infinite-buffer single-server BMAP/BMSP/1 queueing system,

wherein customers arrive according to a batch Markovian arrival process (BMAP). The cus-
tomers are served in batches in accordance with the first-come-first-served (FCFS) queueing
discipline under a batch Markovian service process (BMSP). The arrival process BMAP is
characterized by the ma ×ma rate matrices Dk, k ≥ 0, where Dk corresponds to an arrival
of batch size k if k ≥ 1, and without an arrival if k = 0. The ma-state of the BMAP is usu-
ally referred to as the phase (state) of the underlying Markov chain (UMC) corresponding to
the BMAP. The (i, j)-th element [Dk]ij of Dk denotes the phase transition rate of the UMC
corresponding to the BMAP from state i to j with a batch arrival of size k. The matrix D0

has non-negative off-diagonal and negative diagonal elements, and the matrix Dk, k ≥ 1,
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has non-negative elements. The diagonal element [D0]ii of D0 represents the mean rate of
exponential sojourn time in state i, 1 ≤ i ≤ ma. From practical point of view, the size of
arriving batch is to be of finite support. Therefore, we assume that the random batch size of
arrival process to be finite with maximum batch size N0. This gives Dk = 0, for k ≥ N0+1.
Since D =

∑N0

k=0 Dk is an infinitesimal generator of the underlying Markov chain corre-
sponding to the BMAP, there exists a stationary probability vector πa such that πaD = 0
and πae = 1, where e denotes a column vector with an appropriate order whose all elements
are 1. The average arrival rate λ∗ of the stationary BMAP is given by λ∗ = πa

∑N0

k=1 kDke.
Similarly, the service process BMSP is characterized by the ms × ms rate matrices

Lk, k ≥ 0, where Lk corresponds to a service of batch size k if k ≥ 1 and without a service
if k = 0. The ms-state of the BMSP is usually referred to as the phase (state) of the UMC
corresponding to the BMSP. The (i, j)-th element [Lk]ij of Lk denotes the phase transition
rate of the UMC corresponding to the BMSP from state i to j with a batch service of size
k. The matrix L0 has non-negative off-diagonal and negative diagonal elements, and the
matrix Lk, k ≥ 1, has non-negative elements. The diagonal element [L0]ii of L0 represents
the mean rate of exponential sojourn time in state i. Again, from practical point of view,
the size of servicing batch is to be of finite support. Therefore, we assume that the random
batch size of service process to be finite with maximum batch size M0. This gives Lk = 0,
for k ≥ M0+1. Since L =

∑M0

k=0 Lk is an infinitesimal generator of the underlying Markov
chain corresponding to the BMSP, there exists a stationary probability vector πs such that
πsL = 0 and πse = 1. The average service rate µ∗ of the stationary BMSP is given by
µ∗ = πs

∑M0

k=1 kLke. The traffic intensity is given by ρ = λ∗

µ∗ < 1.

3. Analysis of the Model
In this section, we carry out the analysis of the system-length distributions at random,

pre-arrival, and post-departure epochs as well as the sojourn-time distribution of an arbitrary
customer in an arriving batch.

3.1. System-length distribution at random epoch

We first consider the steady-state system-length distribution at random epoch. For this
purpose, we define the state of the system at time t by Y (t) = (N(t), I(t), J(t)), where
N(t) denotes the number of customers in the system, I(t) the phase of the BMAP and J(t)
the phase of the BMSP at time t. Then {Y (t)}t≥0 is a continuous-time Markov chain on the
state space {(n, i, j) : n ≥ 0, 1 ≤ i ≤ ma, 1 ≤ j ≤ ms}. The Toeplitz type block-structured
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infinitesimal generator Q for the BMAP/BMSP/1 queue has the following structured:

Q =




B0 A1 A2 A3 A4 A5 · · ·
Ŝ1 A0 A1 A2 A3 A4 · · ·
Ŝ2 S1 A0 A1 A2 A3 · · ·
Ŝ3 S2 S1 A0 A1 A2 · · ·
Ŝ4 S3 S2 S1 A0 A1 · · ·
Ŝ5 S4 S3 S2 S1 A0 · · ·
...

...
...

...
...

... . . .




, (1)

where the matrix Ŝn, n ≥ 1, of order mams ×mams decreases the level of the chain by n
and it reaches to the level zero of the chain, while the matrix B0 of order mams × mams

remains at the level zero. The matrix Sn, n ≥ 1, of order mams ×mams decreases the level
of the chain by n and it reaches to the respective level of the chain. The matrix An, n ≥ 1,
of order mams ×mams increases the level of the chain by n, while the matrix A0 of order
mams×mams remains at the same level. We assume that the service process runs during idle
periods of the system without generating any real service completion. Therefore, the block
matrices of the generator (1) can be expressed using the Kronecker product ⊗ operation as

B0 = D0 ⊗ Ims + Ima ⊗ L̂0,

Ŝn = Ima ⊗ L̂n, n ≥ 1,

Sn = Ima ⊗ Ln, n ≥ 1,

A0 = D0 ⊗ Ims + Ima ⊗ L0,

An = Dn ⊗ Ims , n ≥ 1,

where Ir is the identity matrix of order r, and L̂n =
∑M0

k=n Lk, n ≥ 0.
Let π(n) = [π11(n), . . . , π1ms(n), . . . , πij(n), . . . , πma1(n), . . . , πmams(n)], n ≥ 0, de-

note the row vector according to the block structure of the generator Q, where πij(n) rep-
resents the steady-state probability that there are n customers in the system with the ar-
rival process being in phase i (1 ≤ i ≤ ma) and the service process being in phase j
(1 ≤ j ≤ ms). Define the stationary probability vector Π of ΠQ = 0 with Πe = 1 in
the partitioned form as Π = [π(0),π(1),π(2),π(3), . . . ]. Then ΠQ = 0 can be written
explicitly as

π(0)B0 +

M0∑
n=1

π(n)Ŝn = 0, (2)

π(0)An +
n∑

k=1

π(k)An−k +

M0∑
k=1

π(n+ k)Sk = 0, n ≥ 1. (3)

Multiplying (2) by z0 and (3) by zn, using π∗(z) =
∑∞

n=0 π(n)z
n, after simplification, we
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obtain

π∗(z) =

[
π(0)

(
Ima ⊗

(
L(z−1)− L̂0

))
+

M0−1∑
n=1

π(n)

M0∑
k=n+1

(Ima ⊗ Lk)
(
zn−k − 1

)
]
×

(
adj [D(z)⊕ L(z−1)]

det [D(z)⊕ L(z−1)]

)
, (4)

where adj[·] and det[·] are the adjoint matrix and the determinant of a square matrix, respec-
tively.

To obtain the system-length distribution π(n), n ≥ 0, we use the zeros of the char-
acteristic polynomial of the vector-generating function π∗(z). Our primary objective is to
correctly determine the unknown vectors π(n), 0 ≤ n ≤ M0−1, that occur in (4) above. For
this, the idea of the zeros of det[D(z)⊕ L(z−1)] in the unit disk is required. We know that if
ρ < 1 then det[D(z)⊕ L(z−1)] = 0 has exactly (mM0−1) roots inside of |z| = 1, one root
at z = 1 and other mN0 roots outside of |z| = 1 (including multiplicity), where m = ma·ms.
In this connection, the interested reader is referred to Gail et al. [9] or Samanta et al. [28].
We denote the roots whose absolute value is less than one as γ1, γ2, γ3, . . . , γmM0−1 and the
roots whose absolute value is greater than one as α1, α2, α3, . . . , αmN0 . We assume that all
roots are distinct. Since, each component of π∗(z) is convergent in |z| ≤ 1, therefore the ze-
ros of det[D(z)⊕ L(z−1)] whose absolute value is less or equal to one must be the zeros of
the numerator of each component of π∗(z). This shows that we can determine the unknown
vectors π(n), 0 ≤ n ≤ M0− 1, by considering any one component of π∗(z). Therefore, we
rewrite the right-hand side of π∗(z) in (4) as

π∗(z) =

[
F11(z)

G(z)
, . . . ,

Fij(z)

G(z)
, . . . ,

Fmams(z)

G(z)

]
, (5)

where G(z) = det[D(z)⊕ L(z−1)] and Fij(z) is the ij-th component of the vector

[
π(0)

(
Ima ⊗

(
L(z−1)− L̂0

))
+

M0−1∑
n=1

π(n)

M0∑
k=n+1

(Ima ⊗ Lk)
(
zn−k − 1

)]

adj
[
D(z)⊕ L(z−1)

]
.

Now, since each component π∗
ij(z), 1 ≤ i ≤ ma, 1 ≤ j ≤ ms, of π∗(z) is convergent in

|z| ≤ 1 and γ1, γ2, γ3, . . . , γmM0−1, are the zeros of G(z), we have

Fij(γk) = 0, 1 ≤ i ≤ ma, 1 ≤ j ≤ ms, k = 1, 2, . . . ,mM0 − 1, (6)

and using the normalization condition π∗(1)e = 1, we have

lim
z→1

ma∑
i=1

ms∑
j=1

Fij(z)

G(z)
=

ma∑
i=1

ms∑
j=1

F
′
ij(1)

G′(1)
= 1, (7)
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where f
′
(ξ) is the first order derivative of f(z) at z = ξ.

Equations (6) and (7) give mM0 linearly independent simultaneous equations in mM0

unknowns, πij(n)’s (0 ≤ n ≤ M0 − 1, 1 ≤ i ≤ ma, 1 ≤ j ≤ ms). Solving these mM0

equations, we determine the M0 unknown vectors π(n), 0 ≤ n ≤ M0 − 1. Now, after
substituting the value of π(n), 0 ≤ n ≤ M0 − 1, in (5) and letting π = π∗(1), we have

π =

[
F

′
11(1)

G′(1)
, . . . ,

F
′
ij(1)

G′(1)
, . . . ,

F
′
mams

(1)

G′(1)

]
.

Having found π(n), 0 ≤ n ≤ M0 − 1 accurately, we now give our attention to calculate
the remaining state probabilities π(n), n ≥ M0. After substituting the value of π(n),
0 ≤ n ≤ M0−1, in (4), the π∗(z) is a rational function with completely known polynomials
both in the numerator and the denominator, where the degree of numerator is less than to
the degree of denominator. To determine the remaining probability vectors π(n), n ≥ M0,
we proceed to find the partial fractions of π∗(z) involving the zeros of det[D(z)⊕ L(z−1)]
whose absolute value is greater than one. Note that the zeros of det[D(z)⊕ L(z−1)] whose
absolute value is less or equal to one do not play any role in making partial fractions. Now,
applying the partial fraction method on the ij-th component π∗

ij(z) of π∗(z), we have

π∗
ij(z) =

mN0∑
k=1

Ck,ij

αk − z
, 1 ≤ i ≤ ma, 1 ≤ j ≤ ms, (8)

where

Ck,ij = −Fij(αk)

G′(αk)
, 1 ≤ i ≤ ma, 1 ≤ j ≤ ms, k = 1, 2, . . . ,mN0.

Now, collecting the coefficients of zn from both the sides of (8), we have

πij(n) =

mN0∑
k=1

Ck,ij

αn+1
k

, 1 ≤ i ≤ ma, 1 ≤ j ≤ ms, n ≥ 0,

and hence

π(n) =

[mN0∑
k=1

Ck,11

αn+1
k

, . . . ,

mN0∑
k=1

Ck,ij

αn+1
k

, . . . ,

mN0∑
k=1

Ck,mams

αn+1
k

]
, n ≥ 0. (9)

The mean system-length can be obtained from (9) as Ls =
∑∞

n=0 nπ(n)e. From the Little’s
law, we also have mean sojourn time Ws as Ws =

Ls

λ∗ .
For a comparative study between the roots method and the matrix-geometric method,

we now proceed to find out the random epoch probabilities π(n), n ≥ 0, using the matrix-
geometric method given in Neuts [24]. For this purpose, reblocking the Toeplitz type block-
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structure infinitesimal generator Q given above in the QBD form as

Q =




V Z 0 0 0 0 0 0 · · ·
X Y Z 0 0 0 0 0 · · ·
0 X Y Z 0 0 0 0 · · ·
0 0 X Y Z 0 0 0 · · ·
0 0 0 X Y Z 0 0 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . .




, (10)

where the block matrices V, X, Y and Z each of order κ = mams(φ + 1) with φ =
max(N0,M0) are given by

Z =




0 0 0 · · · · · · 0 0 0
Aφ 0 0 · · · · · · 0 0 0
Aφ−1 Aφ 0 · · · · · · 0 0 0
...

...
...

...
...

...
...

...
A3 A4 A5 · · · · · · 0 0 0
A2 A3 A4 · · · · · · Aφ 0 0
A1 A2 A3 · · · · · · Aφ−1 Aφ 0




,

V =




B0 A1 A2 · · · · · · Aφ−2 Aφ−1 Aφ

Ŝ1 A0 A1 · · · · · · Aφ−3 Aφ−2 Aφ−1

Ŝ2 S1 A0 · · · · · · Aφ−4 Aφ−3 Aφ−2
...

...
...

...
...

...
...

...
Ŝφ−2 Sφ−3 Sφ−4 · · · · · · A0 A1 A2

Ŝφ−1 Sφ−2 Sφ−3 · · · · · · S1 A0 A1

Ŝφ Sφ−1 Sφ−2 · · · · · · S2 S1 A0




,

X =




0 Sφ Sφ−1 · · · · · · S3 S2 S1

0 0 Sφ · · · · · · S4 S3 S2

0 0 0 · · · · · · S5 S4 S3
...

...
...

...
...

...
...

...
0 0 0 · · · · · · 0 Sφ Sφ−1

0 0 0 · · · · · · 0 0 Sφ

0 0 0 · · · · · · 0 0 0




,
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Y =




A0 A1 A2 · · · · · · Aφ−2 Aφ−1 Aφ

S1 A0 A1 · · · · · · Aφ−3 Aφ−2 Aφ−1

S2 S1 A0 · · · · · · Aφ−4 Aφ−3 Aφ−2
...

...
...

...
...

...
...

...
Sφ−2 Sφ−3 Sφ−4 · · · · · · A0 A1 A2

Sφ−1 Sφ−2 Sφ−3 · · · · · · S1 A0 A1

Sφ Sφ−1 Sφ−2 · · · · · · S2 S1 A0




.

In order to efficiently solve the system of linear algebraic equations ΠQ = 0 with
Πe = 1, we reblock the vector Π as Π = [Υ(0),Υ(1),Υ(2), . . .], where Υ(n) = [π(n(φ+
1) + 0), . . . ,π(n(φ + 1) + k), . . . ,π(n(φ + 1) + φ)], n ≥ 0. Therefore, ΠQ = 0 can be
written explicitly for QBD form as

Υ(0)V +Υ(1)X = 0, (11)
Υ(n− 1)Z+Υ(n)Y +Υ(n+ 1)X = 0, n ≥ 1. (12)

Applying the matrix-geometric method given in Neuts [24] on (11) and (12), we have

Υ(n) = Υ(0)Rn, n ≥ 0, with R0 = Iκ, (13)

where the square matrix R of order κ is the minimal non-negative solution to the matrix-
quadratic equation

Z+RY +R2X = 0,

and all eigenvalues of R lie inside the unit disk. This matrix R is evaluated numerically by
a simple iterative scheme as follows:

R[n+ 1] = −A−R2[n]C, n ≥ 0, with R[0] = 0,

where A = ZY−1, C = XY−1 and R[n] is the value of R at the n-th iteration.
To obtain Υ(0), we solve the system of linear κ equations

Υ(0)(V +RX) = 0,

from which one equation is replaced by the normalization condition Υ(0)(Iκ −R)−1e = 1.
Once we know R and Υ(0), we can use the result (13) to get π(n), n ≥ 0.

3.2. System-length distribution at pre-arrival epoch

Let π−(n) = [π−
11(n), . . . , π

−
1ms

(n), . . . , π−
ij(n), . . . , π

−
ma1(n), . . . , π

−
mams

(n)], n ≥ 0,
denote the row vector according to the block structure of the generator Q, where π−

ij(n)
represents the pre-arrival epoch probability that an arbitrary customer of an arriving batch
finds n customers (including the customers in front of him in his batch) in the system with
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the arrival process being in phase i and the service process being in phase j. Therefore, we
have

π−(n) =
n∑

r=0

π(r)

(
Hn+1−r ⊗ Ims

)
, n ≥ 0,

where Hk = 1
λ∗

∑N0

n=k Dn, k ≥ 1, is a matrix of order ma × ma whose (i, j)-th element
[Hk]ij represents the probability that the position of an arbitrary customer in an arriving
batch is k with batch arrival phase changes from state i to j. For more details, the interested
reader is referred to Samanta [27].

3.3. System-length distribution at post-departure epoch

Let π+(n) = [π+
11(n), . . . , π

+
1ms

(n), . . . , π+
ij(n), . . . , π

+
ma1(n), . . . , π

+
mams

(n)], n ≥ 0,
denote the row vector according to the block structure of the generator Q, where π+

ij(n)
represents the post-departure epoch probability that there are n customers in the system
immediately after service completion of a batch with the arrival process being in phase i
and the service process being in phase j. Hence, using the “rate-in and rate-out” argument;
for more details, see Kim et al. [16], we have

π+(n) =

n+M0∑
k=n+1

π(k)

(
Ima ⊗ Lk−n

)

∞∑
n=0

n+M0∑
k=n+1

π(k)

(
Ima ⊗ Lk−n

)
e

, n ≥ 0.

3.4. Sojourn-time distribution

In this section, we obtain the sojourn-time distribution of an arbitrary customer in an
arriving batch. The sojourn time means that the total time spent by a customer in the system
(from its arrival until departure). For this, let N (x) denote the number of customers served in
the time interval (0, x] and J (x) be the phase (state) of the underlying Markov chain corre-
sponding to the BMSP at time x with state-space {i : 1 ≤ i ≤ ms}. Then {(N (x),J (x))} is
a two-dimensional Markov process of BMSP with state-space {(n, i) : n ≥ 0, 1 ≤ i ≤ ms}.
Let {P(n, x), n ≥ 0, x ≥ 0} be an ms×ms matrix whose (i, j)-th element is the conditional
probability defined as

Pij(n, x) = Pr{N (x) = n,J (x) = j|N (0) = 0,J (0) = i}, 1 ≤ i, j ≤ ms.

Using the property of BMSP and probability arguments, we have the following system of
matrix differential-difference equation

d

dx
P(n, x) =

n∑
k=0

P(k, x)Ln−k, n ≥ 0, (14)

with P(0, 0) = Ims and P(n, 0) = 0, for n ≥ 1.
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Let W(x) = [W11(x), . . . ,W1ms(x), . . . ,Wij(x), . . . ,Wma1(x), . . . ,Wmams(x)], x ≥
0, denote the row vector according to the block structure of the generator Q, where Wij(x)
represents the stationary joint probability that the sojourn time is at most a time x with
the arrival phase being in i and the service phase being in j at time x, given that arbitrary
customer arrived at time x = 0. Suppose that an arbitrary customer sees the system with n,
n ≥ 0, customers ahead of him upon arrival. If an arbitrary customer completes his service
in the time interval (x, x+dx], then k, 0 ≤ k ≤ n, customers are served in the interval (0, x]
and a batch of size at least (n + 1 − k) customers are served during dx time unit. Thus,
the elementary probability vector dW(x) that an arbitrary customer completes his service
in the time interval (x, x+ dx] is given by

dW(x) =
∞∑
n=0

π−(n)
n∑

k=0

(
Ima ⊗P(k, x)L̂n+1−kdx

)
x > 0.

Hence, the vector probability density function w(x) =
dW(x)

dx
is given by

w(x) =
∞∑
n=0

π−(n)
n∑

k=0

(
Ima ⊗P(k, x)L̂n+1−k

)
x > 0. (15)

The evaluation of the matrix P(n, x), n ≥ 0, occurs in (15) can be carried out along the lines
proposed by Lucantoni [21] for BMAP, which is also same for the BMSP. Hence, applying
the uniformization argument to the matrices P(n, x) as presented by Lucantoni [21], we
have

P(n, x) =
∞∑
k=0

e−θx (θx)
k

k!
U(k)

n , n ≥ 0, x ≥ 0, (16)

where θ = maxi[−L0]ii, 1 ≤ i ≤ ms and U
(k)
n are given by

U(k+1)
n = U(k)

n + θ−1

n∑
r=0

U(k)
r Ln−r, n ≥ 0, k ≥ 0,

with U
(0)
0 = Ims , U(0)

n = 0, n ≥ 1.

Hence, the cumulative sojourn-time distribution of an arbitrary customer in an arriving batch
is given by

W(x) =

∫ x

0

w(t)dt

=
∞∑
n=0

π−(n)
n∑

k=0

(
Ima ⊗

∫ x

0

P(k, t)dtL̂n+1−k

)
, x ≥ 0. (17)
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Using (16) in (17), we obtain

W(x) =
∞∑
n=0

π−(n)
n∑

k=0

(
Ima ⊗

∞∑
r=0

Jr(x)U
(r)
k L̂n+1−k

)
, x ≥ 0,

where

Jr(x) =

∫ x

0

e−θt(θt)r

r!
dt

can be calculated by the iterative scheme

J0(x) =
1

θ

(
1− e−θx

)
,

Jr(x) = Jr−1(x)−
(θx)re−θx

r!θ
, r ≥ 1.

In order to determine the mean sojourn time of an arbitrary customer, let us define the L.-S.T.
of w(x) and P(n, x) as

w̃(s) =

∫ ∞

0

e−sxw(x)dx, Re(s) ≥ 0,

P̃(n, s) =

∫ ∞

0

e−sxP(n, x)dx, n ≥ 0.

Now, multiplying (15) by e−sx and integrating w.r.t. x over 0 to ∞, we obtain

w̃(s) =
∞∑
n=0

π−(n)
n∑

k=0

(
Ima ⊗ P̃(k, s)L̂n+1−k

)
, Re(s) ≥ 0, (18)

where P̃(k, s), k ≥ 0, can be obtained by taking L.-S.T. of (14) as

P̃(0, s) = (sIms − L0)
−1,

P̃(k, s) =
k−1∑
r=0

P̃(r, s)Lk−rP̃(0, s), k ≥ 1.

Differentiating (18) w.r.t. s and setting s = 0, we obtain the mean sojourn time W =

−dw̃(s)e

ds
|s=0 of an arbitrary customer, and it is given by

W =
∞∑
n=0

π−(n)
n∑

k=0

(
Ima ⊗ P̃(1)(k, 0)L̂n+1−k

)
e,

where the first order derivative P̃(1)(k, 0) of P̃(k, s) at s = 0 is given by

P̃(1)(0, 0) = −(−L0)
−2,

P̃(1)(k, 0) =
k−1∑
i=0

[
P̃(1)(i, 0)Lk−i − P̃(i, 0)Lk−i(−L0)

−1

]
(−L0)

−1, k ≥ 1.
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4. Numerical Results
We have done the numerical work based upon the analytical procedure discussed in this

paper. To justify our analytical results, we have created outputs based on the diversified
inputs but only a few of them are appended here in the forms of tables and graphs. All
the calculations are performed using MAPLE software on a PC having configurations as
Intel(R) Core i7-6500U processor @ 2.50 GHz with 8 GB DDR2 RAM in Windows 10
environment. All the numerical results were carried out in high precision, but they are
reported here in 6 decimal places. The analytical results are not affected by considering the
maximum batch size of the arriving batch either less or greater than equal to the maximum
service batch size. To show this impact, we have taken two numerical examples with (i)
maximum batch size of the arriving batch is less than maximum service batch size, i.e.,
N0 < M0, (ii) maximum batch size of the arriving batch is greater than maximum service
batch size, i.e., N0 > M0. The numerical results for these two cases have been presented in
Tables 1 - 8.
Example 1: We have presented the system-length distributions at various time epochs as
well as the sojourn-time distribution of an arbitrary customer in an arriving batch in Tables
1 - 4. For case (i), we choose the following rate matrices Dn, n ≥ 0, of order ma = 2 of
the arrival process BMAP with maximum arrival batch size N0 = 10:

D0 =

[
−0.346 0.069

0.230 −0.376

]
, D3 =

[
0.005 0.007

0.051 0.018

]
, D5 =

[
0.014 0.022

0.002 0.054

]
,

D7 =

[
0.011 0.032

0.008 0.004

]
, D9 =

[
0.006 0.080

0.002 0.003

]
, D10 =

[
0.080 0.020

0.003 0.001

]
,

including Dk = 0, k ∈ N − {3, 5, 7, 9, 10}, where N is the set of natural numbers. Hence,
πaD = 0 and πae = 1 yield πa =

[
0.562738 0.437262

]
with λ∗ = 1.576076.

Again, we choose the following rate matrices Ln, n ≥ 0, of order ms = 3 of the service
process BMSP with maximum service batch size M0 = 18:

L0 =




−0.414 0.069 0.014

0.122 −0.224 0.000

0.230 0.000 −0.378


, L4 =




0.000 0.005 0.007

0.015 0.000 0.034

0.000 0.051 0.018


,

L8 =




0.010 0.014 0.022

0.003 0.011 0.008

0.001 0.002 0.054


, L10 =




0.011 0.032 0.014

0.003 0.005 0.009

0.008 0.004 0.001


,

L13 =




0.006 0.010 0.080

0.001 0.000 0.002

0.002 0.003 0.000


, L18 =




0.020 0.080 0.020

0.001 0.003 0.007

0.003 0.000 0.001


,
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including Lk = 0, k ∈ N − {4, 8, 10, 13, 18}. Hence, πsL = 0 and πse = 1 yield πs =[
0.332192 0.414449 0.253359

]
with µ∗ = 2.035615. Thus, we have ρ = 0.774251.

Further, we have πa⊗πs =
[
0.186937, 0.233226, 0.142575, 0.145255, 0.181223, 0.110784

]
.

The characteristic equation G(z) = 0 has m(N0 + M0) = 168 roots in total. Out of these
168 roots, we have mM0 − 1 = 107 roots inside of |z| = 1, one root at z = 1 and other
mN0 = 60 roots outside of |z| = 1. Using these 107 inside roots γ1, γ2, . . . , γ107 in (6) and
z = 1 in (7), and then solving these mM0 linearly independent simultaneous equations, we
get the vectors π(n), 0 ≤ n ≤ M0 − 1. Further, other 60 roots α1, α2, α3, . . . , α60 outside
the unit disk are used in (8) for partial fractions.
Example 2: We have presented the system-length distributions at various time epochs as
well as the sojourn-time distribution of an arbitrary customer in an arriving batch in Tables
5 - 8. For case (ii), we choose the following rate matrices Dn, n ≥ 0, of order ma = 3 of
the arrival process BMAP with maximum arrival batch size N0 = 15:

D0 =




−0.415 0.059 0.024

0.222 −0.328 0.000

0.450 0.000 −0.547


, D1 =




0.000 0.006 0.008

0.025 0.000 0.024

0.000 0.031 0.028


,

D2 =




0.020 0.024 0.012

0.003 0.021 0.006

0.001 0.002 0.014


, D5 =




0.011 0.022 0.013

0.003 0.004 0.008

0.007 0.003 0.002


,

D10 =




0.005 0.011 0.080

0.001 0.000 0.002

0.002 0.004 0.000


, D15 =




0.020 0.070 0.030

0.001 0.003 0.005

0.002 0.000 0.001


,

including Dk = 0, k ∈ N − {1, 2, 5, 10, 15}. Hence, πaD = 0 and πae = 1 yield
πa =

[
0.479067 0.331818 0.189115

]
with λ∗ = 1.657368.

Again, we choose the following rate matrices Ln, n ≥ 0, of order ms = 2 of the service
process BMSP with maximum service batch size M0 = 8:

L0 =

[
−0.792 0.069

0.230 −0.910

]
, L1 =

[
0.070 0.089

0.061 0.088

]
, L2 =

[
0.065 0.042

0.062 0.034

]
,

L4 =

[
0.091 0.072

0.089 0.095

]
, L6 =

[
0.085 0.075

0.084 0.063

]
, L8 =

[
0.078 0.056

0.037 0.067

]
,

including Lk = 0, k ∈ N − {1, 2, 4, 6, 8}. Hence, πsL = 0 and πse = 1 yield πs =[
0.582816 0.417184

]
with µ∗ = 2.946029. Thus, we have ρ = 0.562577. Further,
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we have πa ⊗πs =
[
0.279208 0.199859 0.193389 0.138429 0.110219 0.078896

]
.

The characteristic equation G(z) = 0 has m(N0 + M0) = 138 roots in total. Out of these
138 roots, we have mM0 − 1 = 47 roots inside of |z| = 1, one root at z = 1 and other
mN0 = 90 roots outside of |z| = 1. Using these 47 inside roots γ1, γ2, . . . , γ47 in (6) and
z = 1 in (7), and then solving these mM0 linearly independent simultaneous equations, we
get the vectors π(n), 0 ≤ n ≤ M0−1. Further, other 90 roots α1, α2, α3, . . . , α90 outside the
unit disk are used in (8) for partial fractions. It is found that the mean sojourn time Ws using
Little’s rule given in Tables 1 and 5 match with the results obtained from the sojourn-time
distribution given in Tables 4 and 8, respectively. Moreover, one can observe from Tables 1
and 5 that

∑∞
n=0 π(n) = πa ⊗ πs, where

∑∞
n=0 π(n) is calculated through roots whereas

πa⊗πs is independent of the roots. This fact confirms the correctness of our analytical and
numerical results.
Example 3: For the purpose of comparative study between the roots method and the MGM,
we choose the rate matrices Dn, n ≥ 0, of order ma = 3 of the arrival process BMAP with
maximum arrival batch size N0 = 10 such that each entry of Dn, n ≥ 0, is a function of δ,
(δ > 0), and they are given by

D0 =




−7δ2
δ2

2

δ2

3
δ

6
−7δ

δ

4

δ3

3

δ3

6
−7δ3




, D1 =




δ2

3

δ2

4

δ2

6
δ

2

δ

6

δ

3

δ3

2

δ3

3

δ3

6




, D2 =




δ2

2

δ2

6

δ2

3
δ

4

δ

2

δ

6

δ3

4

δ3

3

δ3

6




,

D4 =




δ2

4

δ2

2

δ2

6
δ

2

δ

3

δ

4

δ3

3

δ3

6

δ3

2




, D5 =




δ2

4

δ2

3

δ2

4
δ

6

δ

3

δ

4

δ3

4

δ3

2

δ3

3




, D7 =




δ2

2

δ2

6

δ2

4
δ

3

δ

4

δ

2

δ3

4

δ3

4

δ3

6




,

D8 =




δ2

3

δ2

4

δ2

2
δ

2

δ

6

δ

4

δ3

2

δ3

6

δ3

4




, D10 =




δ2

6

δ2

3

δ2

6

δ

6

δ

3

δ2

3

δ3

3

δ3

2

δ3

4



,

including Dk = 0, k ∈ N− {1, 2, 4, 5, 7, 8, 10}.

Similarly, we choose the rate matrices Ln, n ≥ 0, of order ms = 4 of the service process
BMSP with maximum service batch size M0 = 15 such that each entry of Ln, n ≥ 0, is a
function of η, (η > 0), and they are given by
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L0 =




−16

η

1

η

1

4η

1

2η

1

η
−19

η

1

4η

1

2η

1

4η

1

η
−18

η

1

2η

1

5η

1

2η

1

4η
−21

η




, L1 =




1

η

1

4η

1

2η

1

5η

1

2η

1

η

1

5η

1

η

1

2η

1

5η

1

η

1

2η

1

4η

1

η

1

2η

1

5η




,

L2 =




1

5η

1

4η

1

4η

1

3η

1

η

1

4η

1

3η

1

2η

1

2η

1

4η

1

2η

1

5η

1

η

1

4η

1

2η

1

3η




, L3 =




1

2η

1

4η

1

5η

1

η

1

2η

1

5η

1

4η

1

5η

1

2η

1

η

1

5η

1

2η

1

4η

1

2η

1

η

1

5η




,

L5 =




1

5η

1

4η

1

2η

1

4η

1

2η

1

η

1

3η

1

5η

1

2η

1

3η

1

η

1

5η

1

3η

1

5η

1

4η

1

2η




, L6 =




1

3η

1

4η

1

5η

1

3η

1

2η

1

4η

1

5η

1

3η

1

2η

1

3η

1

5η

1

3η

1

3η

1

5η

1

4η

1

η




,

L8 =




1

η

1

4η

1

2η

1

5η

1

2η

1

η

1

5η

1

2η

1

2η

1

4η

1

η

1

2η

1

4η

1

η

1

2η

1

5η




, L9 =




1

5η

1

4η

1

4η

1

3η

1

2η

1

4η

1

3η

1

4η

1

2η

1

5η

1

2η

1

4η

1

η

1

3η

1

2η

1

η




,

C  Bank and Samanta

16



L12 =




1

2η

1

4η

1

5η

1

η

1

2η

1

5η

1

4η

1

5η

1

2η

1

4η

1

5η

1

4η

1

η

1

2η

1

η

1

5η




, L13 =




1

5η

1

4η

1

3η

1

4η

1

2η

1

η

1

3η

1

5η

1

5η

1

3η

1

4η

1

5η

1

3η

1

5η

1

η

1

5η




,

L15 =




1

4η

1

4η

1

5η

1

3η

1

2η

1

4η

1

5η

1

3η

1

4η

1

3η

1

5η

1

3η

1

η

1

5η

1

4η

1

3η




,

including Lk = 0, k ∈ N− {1, 2, 3, 5, 6, 8, 9, 12, 13, 15}.

All the stationary probabilities at random epoch carried out by the MGM also match with
those obtained using the method of roots. We found during the computational work that both
the methods give the same results, but from computation time point of view one method
slightly differ from the other. We have recorded the computation times to calculate π(n),
n ≥ 0, for different traffic intensity (ρ) by the roots method and the MGM when ma = 3
and ms = 4. These computation times are given in Table 9. Figure 1 graphically displays
the results given in Table 9. It is observed from Figure 1 that the computation time re-
quired in the roots method is higher as compared to the MGM for different ρ. Further, in
both the methods, we found the similar effect for different lower orders of input matrices
Dk and Lk, k ≥ 0 during the computational work. Based on computation time, Gupta et
al. [11], and Bank and Samanta [5] have shown that the roots method is numerically more
efficient than the matrix-analytic method developed by Neuts [25] for BMAP/G/1 and
BMAP/G(a,Y )/1 queue, respectively. However, we have found in this work that the MGM
is numerically more efficient than the roots method. Hence, it concludes that all the methods
give the same results but computation time depends on respective problems. Authors sug-
gest the reader and practitioner to use the MGM instead of the roots method for the problem
considered in this paper.
Example 4: We have demonstrated the numerical stability (especially when some of the
roots gets close) of the root finding method based on the mathematical software package
Maple. For this purpose, we choose the rate matrices Dn, n ≥ 0, of order ma = 3 of the
arrival process BMAP with maximum arrival batch size N0 = 10 and they are given by
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D0 =




−0.588700 0.042050 0.028033

0.048333 −2.030000 0.072500

0.008130 0.004065 −0.170723


 , D1 =




0.028033 0.021025 0.014017

0.145000 0.048333 0.096667

0.012195 0.008129 0.004065


 ,

D2 =




0.042050 0.014017 0.028033

0.072500 0.145000 0.048333

0.006097 0.008129 0.004064


 , D3 =




0.021025 0.042050 0.014017

0.145000 0.096667 0.072500

0.008130 0.004065 0.012194


 ,

D4 =




0.021025 0.028033 0.021025

0.048333 0.096667 0.072500

0.006097 0.012195 0.008130


 , D7 =




0.042050 0.014017 0.021025

0.096667 0.072500 0.145000

0.006097 0.006097 0.004065


 ,

D8 =




0.028033 0.021025 0.042050

0.145000 0.048333 0.072500

0.012195 0.004065 0.006097


 , D10 =




0.014017 0.028033 0.014017

0.048333 0.096667 0.096667

0.008130 0.012195 0.006097


 ,

including Dk = 0, k ∈ N − {1, 2, 3, 4, 7, 8, 10}. Hence, πaD = 0 and πae = 1 yield
πa =

[
0.241387 0.064296 0.694317

]
with λ∗ = 1.776913.

Similarly, we choose the rate matrices Ln, n ≥ 0, of order ms = 2 of the service process
BMSP with maximum service batch size M0 = 10 and they are given by

L0 =

[
−1.747578 0.194176

0.009426 −0.339337

]
, L1 =

[
0.194175 0.048544

0.037704 0.012568

]
,

L2 =

[
0.097087 0.038835

0.007541 0.037704

]
, L3 =

[
0.097087 0.064725

0.009426 0.018852

]
,

L4 =

[
0.048545 0.038835

0.007541 0.012568

]
, L5 =

[
0.194175 0.038835

0.012568 0.009426

]
,

L6 =

[
0.048545 0.064725

0.018852 0.007541

]
, L7 =

[
0.064725 0.038835

0.037704 0.012568

]
,

L8 =

[
0.194175 0.064725

0.007541 0.009426

]
, L9 =

[
0.064725 0.038835

0.037704 0.007541

]
,

L10 =

[
0.048544 0.064725

0.012568 0.012568

]
,

including Lk = 0, k ∈ N−{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Hence, πsL = 0 and πse = 1 yield
πs =

[
0.222028 0.777972

]
with µ∗ = 3.126994. Thus, we have ρ = 0.568249.

The characteristic equation G(z) = 0 has m(N0 + M0) = 120 roots in total. Out of these
120 roots, we have mM0 − 1 = 59 roots γ1, γ2, . . . , γ59 inside of |z| = 1, one root at z = 1
and other mN0 = 60 roots α1, α2, . . . , α60 outside of |z| = 1. The accuracy of these roots is
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also verified by back substituting into the characteristic equation G(z) = 0. All the roots of
G(z) = 0 and accuracy of these roots are reported in Table 10 and Table 11 up to 30 decimal
places. Three roots γ1, γ2 and γ3 inside the unit disc are very closed. The first 7 decimals
of roots γ1, γ2 and γ3 are same. One may remark here that we can obtain close roots how-
ever close they may get using the mathematical software package Maple. Therefore, Maple
identifies these roots as distinct roots and hence calculates these roots accurately. For visual
illustration purpose, we have also plotted all 120 roots of G(z) = 0 in Figure 2. Finally, we
have not found any effect in numerical results carried out by the roots method and all the
results are perfectly matched with those obtained using the MGM.

Table 1. System-length distribution at random epoch.

n π11(n) π12(n) π13(n) π21(n) π22(n) π23(n) π(n)e

0 0.025960 0.035912 0.028303 0.015495 0.021967 0.017660 0.145297
1 0.001635 0.002079 0.001827 0.001239 0.001609 0.001610 0.009999
2 0.001669 0.002143 0.001993 0.000950 0.001249 0.001165 0.009169
3 0.003893 0.004840 0.003154 0.002118 0.002670 0.001854 0.018528
4 0.001436 0.001819 0.001558 0.000899 0.001175 0.001047 0.007935
5 0.003972 0.004860 0.003066 0.004372 0.005432 0.003591 0.025293
6 0.002156 0.002627 0.002237 0.001412 0.001734 0.001541 0.011707
7 0.003403 0.004169 0.002743 0.003155 0.003903 0.002580 0.019952
8 0.002233 0.002752 0.001890 0.001618 0.002009 0.001427 0.011928
9 0.004304 0.005224 0.003054 0.005981 0.007336 0.004524 0.030423

10 0.008003 0.009759 0.005609 0.004077 0.004957 0.002923 0.035328
20 0.003462 0.004192 0.002227 0.002288 0.002765 0.001586 0.016521
50 0.001212 0.001494 0.000802 0.000981 0.001208 0.000650 0.006346

100 0.000306 0.000378 0.000202 0.000248 0.000306 0.000164 0.001604
150 0.000077 0.000096 0.000051 0.000063 0.000077 0.000041 0.000405
200 0.000020 0.000024 0.000013 0.000016 0.000020 0.000010 0.000102
300 0.000001 0.000002 0.000000 0.000001 0.000001 0.000000 0.000005
350 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

Sum 0.186937 0.233226 0.142575 0.145255 0.181223 0.110784 1.000000

Ls = 33.125126, Ws = 21.017467
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Table 2. System-length distribution at pre-arrival epoch.

n π−
11(n) π−

12(n) π−
13(n) π−

21(n) π−
22(n) π−

23(n) π−(n)e

0 0.002560 0.003563 0.002823 0.003438 0.004783 0.003788 0.020955
1 0.002732 0.003783 0.003025 0.003668 0.005078 0.004056 0.022342
2 0.002894 0.003993 0.003220 0.003887 0.005360 0.004319 0.023673
3 0.002686 0.003637 0.002869 0.004100 0.005579 0.004408 0.023278
4 0.002784 0.003761 0.002969 0.004271 0.005797 0.004593 0.024176
5 0.002973 0.003952 0.003027 0.003987 0.005292 0.004067 0.023298
6 0.003094 0.004096 0.003168 0.004172 0.005512 0.004258 0.024300
7 0.003167 0.004140 0.003133 0.004041 0.005257 0.003963 0.023700
8 0.003190 0.004166 0.003155 0.004120 0.005351 0.004025 0.024007
9 0.003556 0.004590 0.003347 0.003403 0.004248 0.002968 0.022112

10 0.002769 0.003404 0.002247 0.003663 0.004497 0.002946 0.019526
20 0.002328 0.002818 0.001658 0.003034 0.003673 0.002138 0.015649
50 0.001055 0.001299 0.000698 0.001346 0.001657 0.000890 0.006946

100 0.000266 0.000329 0.000176 0.000340 0.000420 0.000224 0.001755
150 0.000067 0.000083 0.000044 0.000086 0.000106 0.000057 0.000443
200 0.000017 0.000021 0.000011 0.000022 0.000027 0.000014 0.000112
300 0.000001 0.000001 0.000000 0.000001 0.000002 0.000000 0.000005
350 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

Sum 0.145114 0.181047 0.110677 0.187078 0.233401 0.142682 1.000000

Table 3. System-length distribution at post-departure epoch.

n π+
11(n) π+

12(n) π+
13(n) π+

21(n) π+
22(n) π+

23(n) π+(n)e

0 0.003672 0.008713 0.009515 0.002309 0.005749 0.006286 0.036244
1 0.003387 0.008385 0.011099 0.003574 0.008793 0.012784 0.048022
2 0.003939 0.009785 0.013749 0.002565 0.006396 0.008690 0.045125
3 0.002810 0.006885 0.009078 0.002289 0.005670 0.007579 0.034311
4 0.002784 0.006863 0.009269 0.002311 0.005660 0.007490 0.034377
5 0.003151 0.007468 0.010000 0.003035 0.007266 0.009838 0.040758
6 0.003889 0.009038 0.013084 0.002778 0.006533 0.009618 0.044941
7 0.002783 0.006825 0.009560 0.002161 0.005384 0.007152 0.033866
8 0.002686 0.006473 0.008707 0.002231 0.005356 0.007198 0.032651
9 0.002843 0.006816 0.009081 0.002286 0.005530 0.007123 0.033679

10 0.002701 0.006475 0.008365 0.002216 0.005289 0.007039 0.032084
20 0.002082 0.004911 0.006656 0.001705 0.004007 0.005482 0.024843
50 0.000918 0.002145 0.002949 0.000744 0.001739 0.002390 0.010885

100 0.000232 0.000542 0.000745 0.000188 0.000439 0.000604 0.002749
150 0.000059 0.000137 0.000188 0.000047 0.000111 0.000153 0.000695
200 0.000015 0.000035 0.000048 0.000012 0.000028 0.000039 0.000176
300 0.000000 0.000002 0.000003 0.000000 0.000002 0.000002 0.000009
350 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

Sum 0.133480 0.315799 0.429937 0.107836 0.255765 0.348950 1.000000
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Table 4. Sjourn-time distribution.

x W11(x) W12(x) W13(x) W21(x) W22(x) W23(x) W (x)e

0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 0.001425 0.003731 0.004172 0.001893 0.004953 0.005579 0.021753
1.0 0.002846 0.007466 0.008331 0.003776 0.009897 0.011122 0.043438
1.5 0.004257 0.011184 0.012459 0.005641 0.014806 0.016605 0.064952
2.0 0.005652 0.014870 0.016544 0.007481 0.019661 0.022012 0.086219
2.5 0.007028 0.018511 0.020574 0.009292 0.024446 0.027332 0.107182
3.0 0.008383 0.022099 0.024542 0.011072 0.029152 0.032556 0.127803
3.5 0.009715 0.025628 0.028442 0.012817 0.033771 0.037680 0.148053
4.0 0.011022 0.029094 0.032272 0.014528 0.038298 0.042699 0.167913
4.5 0.012305 0.032494 0.036028 0.016203 0.042732 0.047611 0.187372
5.0 0.013561 0.035825 0.039710 0.017842 0.047069 0.052416 0.206424

10.5 0.025712 0.067990 0.075303 0.033572 0.088658 0.098511 0.389746
20.0 0.040613 0.107303 0.118945 0.052681 0.139049 0.154480 0.613071
50.5 0.060534 0.159765 0.177285 0.078113 0.206019 0.228957 0.910673

100.0 0.065963 0.174058 0.193184 0.085039 0.224251 0.249238 0.991732
150.5 0.066468 0.175388 0.194662 0.085683 0.225946 0.251124 0.999271
200.0 0.066512 0.175504 0.194792 0.085739 0.226095 0.251289 0.999932
250.5 0.066516 0.175515 0.194804 0.085744 0.226109 0.251305 0.999994
285.0 0.066517 0.175516 0.194805 0.085745 0.226110 0.251306 0.999999
300.5 0.066517 0.175516 0.194805 0.085745 0.226110 0.251306 0.999999

W = 21.017467

Table 5. System-length distribution at random epoch.

n π11(n) π12(n) π21(n) π22(n) π31(n) π32(n) π(n)e

0 0.117391 0.087516 0.068588 0.051248 0.023642 0.018123 0.366507
1 0.009346 0.006687 0.005810 0.004290 0.004639 0.003333 0.034106
2 0.010036 0.006886 0.007872 0.005362 0.004388 0.003145 0.037688
3 0.006211 0.004441 0.004165 0.002975 0.002226 0.001631 0.021649
4 0.006432 0.004701 0.003827 0.002867 0.002895 0.002158 0.022879
5 0.008388 0.005777 0.006767 0.004631 0.003738 0.002647 0.031947
6 0.006145 0.004442 0.003698 0.002727 0.002923 0.002171 0.022106
7 0.006130 0.004394 0.004658 0.003375 0.002310 0.001711 0.022578
8 0.005520 0.003916 0.003428 0.002500 0.002509 0.001760 0.019633
9 0.006470 0.004774 0.004694 0.003395 0.002896 0.002365 0.024595

10 0.008954 0.005917 0.004867 0.003413 0.009904 0.006649 0.039703
20 0.003296 0.002215 0.002681 0.001806 0.001957 0.001306 0.013262
50 0.000343 0.000232 0.000286 0.000194 0.000194 0.000131 0.001381

100 0.000008 0.000005 0.000007 0.000005 0.000005 0.000003 0.000033
155 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

Sum 0.279208 0.199859 0.193389 0.138429 0.110219 0.078896 1.000000

Ls = 9.994732, Ws = 6.030486
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Table 6. System-length distribution at pre-arrival epoch.

n π−
11(n) π−

12(n) π−
21(n) π−

22(n) π−
31(n) π−

32(n) π−(n)e

0 0.005503 0.004109 0.011150 0.008326 0.012633 0.009434 0.051155
1 0.004934 0.003671 0.011243 0.008360 0.011764 0.008748 0.048719
2 0.003819 0.002809 0.009569 0.007054 0.011457 0.008450 0.043157
3 0.003883 0.002859 0.009858 0.007261 0.011802 0.008702 0.044364
4 0.003996 0.002951 0.010195 0.007521 0.012273 0.009056 0.045991
5 0.003297 0.002404 0.009083 0.006647 0.011788 0.008639 0.041857
6 0.003319 0.002425 0.009317 0.006819 0.012104 0.008876 0.042859
7 0.003365 0.002463 0.009495 0.006958 0.012451 0.009131 0.043862
8 0.003426 0.002505 0.009755 0.007138 0.012798 0.009374 0.044997
9 0.003562 0.002608 0.010106 0.007407 0.013291 0.009745 0.046719

10 0.003380 0.002445 0.009971 0.007231 0.008390 0.006008 0.017469
20 0.001570 0.001088 0.004368 0.003030 0.004384 0.003028 0.037425
50 0.000176 0.000120 0.000493 0.000335 0.000477 0.000324 0.001925

100 0.000004 0.000003 0.000012 0.000008 0.000011 0.000008 0.000045
155 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

Sum 0.089037 0.063733 0.241517 0.172880 0.252261 0.180571 1.000000

Table 7. System-length distribution at post-departure epoch.

n π+
11(n) π+

12(n) π+
21(n) π+

22(n) π+
31(n) π+

32(n) π+(n)e

0 0.012118 0.011283 0.007926 0.007256 0.005658 0.005317 0.049558
1 0.012209 0.011768 0.009274 0.008999 0.005182 0.005089 0.052520
2 0.010725 0.009967 0.006527 0.006122 0.006343 0.005913 0.045595
3 0.010876 0.009916 0.008040 0.007188 0.004863 0.004440 0.045323
4 0.011018 0.010361 0.007158 0.006947 0.007309 0.006615 0.049407
5 0.009750 0.009036 0.007145 0.006494 0.004510 0.004240 0.041174
6 0.009961 0.009317 0.006569 0.006277 0.006863 0.006279 0.045267
7 0.010147 0.009363 0.008758 0.008085 0.005087 0.004706 0.046145
8 0.009247 0.008420 0.006405 0.005947 0.006145 0.005116 0.052520
9 0.010602 0.010038 0.009370 0.008449 0.007163 0.007366 0.052987

10 0.007422 0.007034 0.005751 0.005512 0.003807 0.003593 0.033119
20 0.003755 0.003511 0.003071 0.002864 0.002071 0.001943 0.017215
50 0.000407 0.000382 0.000340 0.000318 0.000230 0.000215 0.001891

100 0.000010 0.000009 0.000008 0.000007 0.000005 0.000005 0.000044
155 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

Sum 0.220740 0.206288 0.173893 0.162351 0.122421 0.114307 1.000000
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Table 8. Sjourn-time distribution.

x W11(x) W12(x) W21(x) W22(x) W31(x) W32(x) W (x)e

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.5 0.005708 0.005147 0.013739 0.012397 0.016009 0.014466 0.067466
1.0 0.011091 0.009997 0.027174 0.024510 0.031546 0.028479 0.132798
1.5 0.016175 0.014574 0.040231 0.036277 0.046441 0.041896 0.195596
2.0 0.020974 0.018892 0.052838 0.047631 0.060584 0.054623 0.255543
2.5 0.025495 0.022959 0.064928 0.058513 0.073910 0.066606 0.312411
3.0 0.029744 0.026780 0.076446 0.068876 0.086390 0.077821 0.366057
3.5 0.033727 0.030359 0.087356 0.078686 0.098020 0.088267 0.416414
4.0 0.037449 0.033704 0.097633 0.087924 0.108814 0.097959 0.463482
4.5 0.040918 0.036820 0.107269 0.096582 0.118800 0.106922 0.507311
5.0 0.044143 0.039716 0.116265 0.104663 0.128014 0.115191 0.547993
6.0 0.049900 0.044884 0.132397 0.119147 0.144298 0.129801 0.620428
7.5 0.056980 0.051237 0.152306 0.137014 0.164037 0.147506 0.709080
9.0 0.062485 0.056176 0.167801 0.150915 0.179192 0.161097 0.777666

10.5 0.066729 0.059982 0.179738 0.161621 0.190780 0.171489 0.830339
20.0 0.078002 0.070092 0.211352 0.189969 0.221322 0.198876 0.969613
50.5 0.080458 0.072294 0.218218 0.196127 0.227957 0.204825 0.999879
60.0 0.080466 0.072301 0.218241 0.196147 0.227979 0.204845 0.999978
90.5 0.080468 0.072303 0.218246 0.196152 0.227983 0.204849 1.000000

100.0 0.080468 0.072303 0.218246 0.196152 0.227983 0.204849 1.000000

W = 6.030486

Table 9. Computation time to get π(n), n ≥ 0, for different ρ.

δ η ρ
Time (Second)

Roots method MGM
0.35 4.0 0.105963 19054.76 1275.79
0.40 5.5 0.204190 18873.11 1399.18
0.45 6.5 0.322783 18920.46 1815.48
0.48 7.0 0.406492 19109.17 2135.43
0.51 7.5 0.503497 19187.34 2556.84
0.54 8.0 0.614643 19067.51 3012.96
0.57 8.5 0.740728 19145.84 4544.60
0.59 8.8 0.830315 19221.37 5241.85
0.61 9.0 0.916410 19404.07 6342.23
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Figure 1. Computation time to get π(n), n ≥ 0, for different ρ.

Figure 2. Location of all roots of G(z) = 0.
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Table 10. The roots of G(z) = 0 in |z| ≤ 1 and their accuracy.
γi Roots |G(γi)|
γ1 −0.110400923414066008759219539984 8.710000000000000000000000000000× 10−523

γ2 −0.110400926619440682553371298224 1.432900000000000000000000000000× 10−523

γ3 −0.110400937630677526927125064109 8.187000000000000000000000000000× 10−523

γ4 0.320400084706996544771508990594− 0.448479642118275453126191570797i 5.846366392897386652806509325200× 10−521

γ5 0.320400084706996544771508990594 + 0.448479642118275453126191570797i 5.846366392897386652806509325200× 10−521

γ6 0.534289368244009405053690490891− 0.174280143043974380915847249993i 2.373785162983373270203501468228× 10−520

γ7 0.534289368244009405053690490891 + 0.174280143043974380915847249993i 2.373785162983373270203501468228× 10−520

γ8 0.342905443731415114392731765870− 0.483087168881854594723545070216 2.965889411289638762750906457704× 10−520

γ9 0.342905443731415114392731765870 + 0.483087168881854594723545070216 2.965889411289638762750906457704× 10−520

γ10 0.012948559373001676316748782166− 0.606361669433420426886292320274i 2.778160542517296641479044551327× 10−520

γ11 0.012948559373001676316748782166 + 0.606361669433420426886292320274i 2.778160542517296641479044551327× 10−520

γ12 0.584540238643891927378272258587− 0.188137175756215312036505015909i 4.873704956190926418480916666996× 10−520

γ13 0.584540238643891927378272258587 + 0.188137175756215312036505015909i 4.873704956190926418480916666996× 10−520

γ14 0.355534381073907957424412863835− 0.502403835658666519663103500442i 1.478276022940235610178880719663× 10−520

γ15 0.355534381073907957424412863835 + 0.502403835658666519663103500442i 1.478276022940235610178880719663× 10−520

γ16 −0.223434443737494889747625346811− 0.588495978175506378581370598181i 5.636922919465903074625929111898× 10−520

γ17 −0.223434443737494889747625346811 + 0.588495978175506378581370598181i 5.636922919465903074625929111898× 10−520

γ18 −0.640071681385930657412212340735− 0.056965621936319161263743857009i 1.118209729880758996787562196920× 10−519

γ19 −0.640071681385930657412212340735 + 0.056965621936319161263743857009i 1.118209729880758996787562196920× 10−519

γ20 0.615127658043940124937050815342− 0.194644212087934559518578277393i 2.268540059156990068601507141902× 10−519

γ21 0.615127658043940124937050815342 + 0.194644212087934559518578277393i 2.268540059156990068601507141902× 10−519

γ22 −0.529273257260324729581546137657− 0.380528498435929597816870865005i 1.019306627075484092283009434320× 10−519

γ23 −0.529273257260324729581546137657 + 0.380528498435929597816870865005i 1.019306627075484092283009434320× 10−519

γ24 0.016358368718113427481296631814− 0.652842813031811305219082768141i 1.325634187851233716061141821111× 10−519

γ25 0.016358368718113427481296631814 + 0.652842813031811305219082768141i 1.325634187851233716061141821111× 10−519

γ26 −0.471596637789278595535930119479− 0.452638323206608187953603830622i 7.785788335165553420158100924347× 10−520

γ27 −0.471596637789278595535930119479 + 0.452638323206608187953603830622i 7.785788335165553420158100924347× 10−520

γ28 0.124503176708051754930169679936− 0.652865015896841998465172600065i 3.002043470704579920607140165009× 10−519

γ29 0.124503176708051754930169679936 + 0.652865015896841998465172600065i 3.002043470704579920607140165009× 10−519

γ30 0.015084753071278079545718095598− 0.678067815269462670357808134190i 3.816895236969440323284286425145× 10−519

γ31 0.015084753071278079545718095598 + 0.678067815269462670357808134190i 3.816895236969440323284286425145× 10−519

γ32 −0.240653849473855393028212011443− 0.634718428692994117058897512030i 5.778867449595984633618545064892× 10−519

γ33 −0.240653849473855393028212011443 + 0.634718428692994117058897512030i 5.778867449595984633618545064892× 10−519

γ34 −0.687833860398420622671893260326− 0.075543394088017605551868100684i 4.064556679393215202947029909553× 10−519

γ35 −0.687833860398420622671893260326 + 0.075543394088017605551868100684i 4.064556679393215202947029909553× 10−519

γ36 −0.501255415530992723045502944800− 0.492043283759255705164782861517i 1.779843468538736414237794948599× 10−518

γ37 −0.501255415530992723045502944800 + 0.492043283759255705164782861517i 1.779843468538736414237794948599× 10−518

γ38 −0.580174182760349065804893157044− 0.403840289649339939073437419866i 2.131930639115635018786985157267× 10−518

γ39 −0.580174182760349065804893157044 + 0.403840289649339939073437419866i 2.131930639115635018786985157267× 10−518

γ40 0.138469042798308448991519733374− 0.694280774023043750478549138476i 1.713420555497102701897050868450× 10−519

γ41 0.138469042798308448991519733374 + 0.694280774023043750478549138476i 1.713420555497102701897050868450× 10−519

γ42 −0.251416877563965724773465905037− 0.667030019861702725544667135491i 8.898770982557085674850197844482× 10−519

γ43 −0.251416877563965724773465905037 + 0.667030019861702725544667135491i 8.898770982557085674850197844482× 10−519

γ44 −0.716786564835662238755589951188− 0.086714798775763102496995562276i 1.748009739675382930044378287587× 10−518

γ45 −0.716786564835662238755589951188 + 0.086714798775763102496995562276i 1.748009739675382930044378287587× 10−518

γ46 −0.514978630616171132393271122059− 0.514480743247183818002472355331i 2.430680478984434515014623959482× 10−518

γ47 −0.514978630616171132393271122059 + 0.514480743247183818002472355331i 2.430680478984434515014623959482× 10−518

γ48 0.541354201205154565368734693881− 0.491397475595220674574637133772i 4.651760759110468269138666247723× 10−518

γ49 0.541354201205154565368734693881 + 0.491397475595220674574637133772i 4.651760759110468269138666247723× 10−518

γ50 0.152926921894043504472507911658− 0.717352723559405107009099227323i 1.390969809161938640241822774457× 10−518

γ51 0.152926921894043504472507911658 + 0.717352723559405107009099227323i 1.390969809161938640241822774457× 10−518

γ52 −0.615311495969519174302685320755− 0.416266215481631873556918712574i 1.545894774070990900443706491259× 10−517

γ53 −0.615311495969519174302685320755 + 0.416266215481631873556918712574i 1.545894774070990900443706491259× 10−517

γ54 0.578617995650982326004796359876− 0.522951414239860490188882322652i 4.158773972470732870088570729015× 10−517

γ55 0.578617995650982326004796359876 + 0.522951414239860490188882322652i 4.158773972470732870088570729015× 10−517

γ56 0.601688973920937729418538173776− 0.537233410818626848870880775336i 1.792840458246354948093019116693× 10−516

γ57 0.601688973920937729418538173776 + 0.537233410818626848870880775336i 1.792840458246354948093019116693× 10−516

γ58 0.836113067283192371891396436700 7.239693000000000000000000000000× 10−515

γ59 0.923850396491094858988057241037 1.040653584000000000000000000000× 10−512

z 1.000000000000000000000000000000 0.000000000000000000000000000000

Queueing Models and Service Management

25



Table 11. The roots of G(z) = 0 in |z| > 1 and their accuracy.
αi Roots |G(αi)|
α1 1.045036369573429331975596299255 2.744508015392000000000000000000× 10−509

α2 1.212764510325487037122480191119 3.028075780077619000000000000000× 10−505

α3 −1.266632708027585645656606820224 3.792438479693385000000000000000× 10−504

α4 −1.016867114746705890865548374704 + 0.756728479217668982704328321372 8.442234275118088811471707123724× 10−504

α5 −1.016867114746705890865548374704− 0.756728479217668982704328321372 8.442234275118088811471707123724× 10−504

α6 0.987617452684484643273029153270 + 0.801884066089746787414546923840i 3.079861997793776079431873811687× 10−505

α7 0.987617452684484643273029153270− 0.801884066089746787414546923840i 3.079861997793776079431873811687× 10−505

α8 −0.299301103076140646724595419267 + 1.245052167899488048925383180130i 3.166880729857330100122337325133× 10−504

α9 −0.299301103076140646724595419267− 1.245052167899488048925383180130i 3.166880729857330100122337325133× 10−504

α10 −1.102394490967652034942766413004 + 0.810454361566169997029552578472i 1.319709114275801772175548344401× 10−501

α11 −1.102394490967652034942766413004− 0.810454361566169997029552578472i 1.319709114275801772175548344401× 10−501

α12 −1.372033654593128141664094952592 7.968673545039156538000000000000× 10−502

α13 1.067507481736167942060350792971 + 0.864682454419441058517551316206i 2.919086076084383386959235782527× 10−502

α14 1.067507481736167942060350792971− 0.864682454419441058517551316206i 2.919086076084383386959235782527× 10−502

α15 −0.358007317679357592714133355739 + 1.339341196313958543633905314689i 1.475200285064385974307014840101× 10−501

α16 −0.358007317679357592714133355739− 1.339341196313958543633905314689i 1.475200285064385974307014840101× 10−501

α17 0.438003522211068129445294198806 + 1.383052052988534787243543907566i 3.536970239959074204371043200503× 10−500

α18 0.438003522211068129445294198806− 1.383052052988534787243543907566i 3.536970239959074204371043200503× 10−500

α19 0.446266209896552183639971351569 + 1.451855573481970684069228484090i 1.634784756774294014078653140194× 10−498

α20 0.446266209896552183639971351569− 1.451855573481970684069228484090i 1.634784756774294014078653140194× 10−498

α21 −1.422736561049765739544921445253 + 0.598469601178451322241269749074i 1.718063696005108404899754220976× 10−497

α22 −1.422736561049765739544921445253− 0.598469601178451322241269749074i 1.718063696005108404899754220976× 10−497

α23 1.469975182595085584064074583917 + 0.543684844609373136984671527615i 9.986808402355485774854269629661× 10−497

α24 1.469975182595085584064074583917− 0.543684844609373136984671527615i 9.986808402355485774854269629661× 10−497

α25 0.154232714591657924823095852578 + 1.562115683977569710103026975039i 7.147169471963229719515437901246× 10−497

α26 0.154232714591657924823095852578− 1.562115683977569710103026975039i 7.147169471963229719515437901246× 10−497

α27 0.807762341835651198146358835125 + 1.346563593584469597172479425840i 5.119216009197566309562149085159× 10−497

α28 0.807762341835651198146358835125− 1.346563593584469597172479425840i 5.119216009197566309562149085159× 10−497

α29 −0.926477813723466196082344342384 + 1.299962086187522910658750530874i 2.425059157918212043163423539563× 10−496

α30 −0.926477813723466196082344342384− 1.299962086187522910658750530874i 2.425059157918212043163423539563× 10−496

α31 −0.374044661995512970856249962762 + 1.581268712633446066276803825470i 8.504336286915530619019929455144× 10−496

α32 −0.374044661995512970856249962762− 1.581268712633446066276803825470i 8.504336286915530619019929455144× 10−496

α33 −1.619260861673811190115166170056 + 0.424160969043128740836777737923i 1.654244845499706078110750987111× 10−494

α34 −1.619260861673811190115166170056− 0.424160969043128740836777737923i 1.654244845499706078110750987111× 10−494

α35 0.870751027018977877182554517706 + 1.503451694103200371479074355474i 4.302347717866225773578489939738× 10−493

α36 0.870751027018977877182554517706− 1.503451694103200371479074355474i 4.302347717866225773578489939738× 10−493

α37 −1.599956291223531516039430925229 + 0.680547276822694804149260086803i 3.949273311264426320201931750639× 10−493

α38 −1.599956291223531516039430925229− 0.680547276822694804149260086803i 3.949273311264426320201931750639× 10−493

α39 1.646837029929016729850412661768 + 0.628066799888289603186718850378i 4.681368451996591918746992638616× 10−492

α40 1.646837029929016729850412661768− 0.628066799888289603186718850378i 4.681368451996591918746992638616× 10−492

α41 0.198355150251332330178314022519 + 1.760692224171129529482236276596i 2.005247002010929200841314368456× 10−492

α42 0.198355150251332330178314022519− 1.760692224171129529482236276596i 2.005247002010929200841314368456× 10−492

α43 1.745426787619964765998693408074 + 0.484505310862602574963526309516i 2.759215478593746895017111501508× 10−491

α44 1.745426787619964765998693408074− 0.484505310862602574963526309516i 2.759215478593746895017111501508× 10−491

α45 1.265305147723147003959128525951 + 1.297976074760152490467559407636i 3.491273609308094214545003896049× 10−491

α46 1.265305147723147003959128525951− 1.297976074760152490467559407636i 3.491273609308094214545003896049× 10−490

α47 −0.393495690140639291723432142498 + 1.785577613538494860816464687324i 1.129297608402388937484172543023× 10−490

α48 −0.393495690140639291723432142498− 1.785577613538494860816464687324i 1.129297608402388937484172543023× 10−490

α49 −1.056456570807461805009088819016 + 1.522973470773642209887123150655i 6.432496674698445604877782022097× 10−490

α50 −1.056456570807461805009088819016− 1.522973470773642209887123150655i 6.432496674698445604877782022097× 10−490

α51 −1.795268318451265097470621551956 + 0.469903416856177890958571812212i 1.068352128021619212746632111800× 10−490

α52 −1.795268318451265097470621551956− 0.469903416856177890958571812212i 1.068352128021619212746632111800× 10−490

α53 1.881819598610848498033222464966 + 0.508095668418690646962737128518i 2.142468332706899188030906590966× 10−488

α54 1.881819598610848498033222464966− 0.508095668418690646962737128518i 2.142468332706899188030906590966× 10−488

α55 1.352232378224437245006709904314 + 1.418238898649134957133011104968i 2.126061785678492488599531218409× 10−487

α56 1.352232378224437245006709904314− 1.418238898649134957133011104968i 2.126061785678492488599531218409× 10−487

α57 −1.153738938887740895284719293530 + 1.778392218757731268734438778137i 2.802561441156652825139962146526× 10−484

α58 −1.153738938887740895284719293530− 1.778392218757731268734438778137i 2.802561441156652825139962146526× 10−484

α59 −1.199996157661561624931617934489 + 1.759121968763797025197347885903i 4.370460306438195980270664603995× 10−484

α60 −1.199996157661561624931617934489− 1.759121968763797025197347885903i 4.370460306438195980270664603995× 10−484
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5. Conclusion
The main contribution of this paper is the derivation of analytical results to evaluate the

steady-state system-length distributions at random, pre-arrival and post-departure epochs of
the BMAP/BMSP/1 queue. Analysis is based on the roots of the associated characteristic
equation of the vector-generating function of system-length distribution at random epoch.
Further, we have demonstrated a comprehensive analysis of the system-length distribution at
random epoch using the matrix-geometric method. We have also obtained the sojourn-time
distribution of an arbitrary customer in an arriving batch. We have carried out some relevant
performance measures which will be beneficial to practitioners for modeling of complex
communication systems such as traffic modeling of IP networks. We have performed exten-
sive computational works with the diversified inputs and they are appended in the forms of
tables and graphs. Finally, a comparative study is also carried out numerically to compare
the roots method with that of the matrix-geometric method.
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