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Abstract: This paper addresses the staffing problem for inpatient units treating diverse pa-
tient types in a hospital. We develop a queueing model to determine the optimal staffing
levels within resource constraints. This quantitative approach offers a valuable analytical
tool for hospital managers, enabling them to make more informed and efficient staffing de-
cisions for inpatient units. To ensure the robustness of the results from our analytical model
in real-world scenarios, we also employ a simulation model. Numerical examples are pro-
vided to illustrate the procedure and generate practical insights for healthcare practitioners.
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1. Introduction
The importance of setting appropriate nurse staffing levels in acute hospital wards is

widely recognized. However, effective quantitative methods for determining the optimal
staffing policy remain scarce. As Hossny [6] points out, nurses are a critical resource in
healthcare settings, accounting for 60% of the healthcare system. In these settings, nurses
are expected to provide proficient, patient-centered, and cost-effective care.

Human resources in healthcare can be categorized into generalists and specialists. Nurses
fall into the former category, while specialist doctors, such as cardiologists or urologists, be-
long to the latter. This classification implies that nurses provide services to a diverse range of
patients, each requiring different types of care. These varied services entail different costs
and times. Additionally, nursing service systems are characterized by the randomness of
service times and the inter-arrival times of patients to inpatient units in a hospital. These
characteristics suggest the use of stochastic models to analyze the nurse staffing problem.

In general, nurse resources are limited by budget constraints, yet it is essential to main-
tain a certain level of service for patients. Therefore, the nurse staffing problem can be for-
mulated as an optimization problem aimed at minimizing costs while meeting service level
* Corresponding author
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constraints. In this paper, we present a continuous-time Markov chain (CTMC) model to
address this problem. The CTMC model, also known as a stochastic knapsack with random
arrivals, involves N resource units to which customers of K mutually independent types
arrive. Arrivals of type i, i = 1, · · · , K, are governed by a random process. If an arriving
type i customer is admitted to the knapsack, they occupy ni resource units for a random
holding time. The knapsack follows a complete sharing policy for admitting different types
of arrivals (see Ross [9]). The capacity constraint can be expressed as

∑K
j=1 Xi(t)ni ≤ N ,

whereXi(t) is the number of type i customers in the system at time t. This stochastic knap-
sack model aligns well with the nurse staffing situation. Consequently, we develop an ex-
pected cost function for operating inpatient units in a hospital and determine the optimal
nurse staffing level to minimize this cost function.

The paper is organized as follows. Section 2 reviews the related literature and positions
our work. Section 3 presents a general model for the nurse staffing problem based on the
stochastic knapsack. Then, the expected cost function is developed specifically for staffing
nurses in inpatient units with two types of patients. In Section 4, some numerical examples
are presented to illustrate the results obtained. To test the robustness of the results, we also
build Arena simulation model to test more realistic non-exponentially distributed random
variables. In Section 5. we discuss the approximation method to extend the model to treat
the case with more than two types of patients. Finally, Section 6 concludes the paper with a
summary.

2. Literature Review
Our work relates to two streams of studies. The first stream focuses on nursing workload

and methodologies and tools for nurse staffing. The second stream encompasses stochastic
models that address resource allocation in service systems with random factors. Many of
these models are inspired by optimal control and design problems in computer networks. For
instance, as noted in the introduction, the stochastic knapsack model, primarily developed
for analyzing telecommunication systems, serves as a key reference. We provide a brief
review of the literature in these two areas.

Griffiths et al. [5] conducted a systematic scoping review on nursing workload, nurse
staffing methodologies, and tools. To determine the appropriate nurse staffing level, hospi-
tal administrators or schedulers need the following key information: (i) the major required
nursing activities in inpatient units for each type of patient (see Hossny [6]); (ii) the time
spent on each of these activities for each patient (see Abbey [1]); and (iii) the hiring cost of
registered nurses. While the third piece of information is generally straightforward to obtain,
the first two are often difficult to quantify, necessitating further research. In this paper, we
assume that all three pieces of information are available. Given this information, the opti-
mal nurse staffing level that minimizes the overall cost of operating the inpatient units can
be determined, assuming the staffing level influences service capacity.

The determination of appropriate nurse staffing levels and workload measurement was
first studied by Lewinski-Corwin [8]. Since then, numerous studies and reviews have fo-
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cused on methods for determining nurse staffing levels, as summarized in Hossny [6]. These
methods, developed over the years, can be categorized into several approaches: ”profes-
sional judgment,” ”benchmarking,” ”volume-based,” ”patient prototype,” ”multi-factorial
indicator,” and ”time-task” approaches, all detailed in Hossny [6].

Regarding the quantitative nature of nurse staffing decisions, researchers have proposed
various methods based on operational research, as surveyed by Saville et al. [11]. They iden-
tified 27 papers employing methodological approaches from operational research, including
optimization (24/27 papers), simulation (6/27 papers), queuing theory (3/27 papers), and
forecasting (1/27 paper). For more details on these approaches and additional references,
readers are referred to Saville et al. [11].

Another related stream of research concerns resource allocation in service networks,
primarily motivated by the management of telecommunication and computer networks. A
notable example in this area is the work by Sarangan et al. [10], who examined a tele-traffic
system based on the internet and World Wide Web (WWW), where arrivals are bursty, mod-
eling it as a stochastic knapsack problem constrained by bandwidth. Although the primary
focus of Sarangan et al.’s study is not on staffing level decisions in service systems, the gen-
eral structure aligns well with the problem we address in this paper. This research field re-
mains active due to the continuous evolution of the Internet and WWW. Chen and Ross [3]
and Arlotto and Xie [2] are representative studies that reflect recent developments in this
area. For a concise overview, we refer readers to these works and the references therein for
the latest advancements.

Although these two streams of research are related to our work, there appears to be a gap
between them. No existing study seems to effectively integrate these approaches. Our aim
is to bridge this gap by proposing a stochastic knapsack model to address the nurse staffing
issue for inpatient units in hospitals.

3. The Model and Cost Function
In this section, we first present some preliminaries for the model formulation and analy-

sis and then develop a general stochastic nurse staffing model based on the stochastic knap-
sack.

3.1. Preliminaries

The main focus of analyzing a stochastic nurse-staffing model is to figure out the sta-
tionary distribution of the system. Such a analysis is based on the time reversibility of the
stochastic process. We start with the definition of this property. At time t, let X(t) be the
stochastic process which represents the state of the system that is continuously observed, for
all t ∈ (−∞,∞). If stochastic process {X(t),−∞ < t < ∞} is stochastically identical to
the process {X(τ − t),−∞ < t < ∞} for all τ ∈ (−∞,∞), then {X(t),−∞ < t < ∞}
is a reversible process. The process {X(τ − t),−∞ < t < ∞} for any τ ∈ (−∞,∞) is
known as the reversed process at τ . Although this is the definition of a reversed process, it
is usually hard to show a CTMC is reversible based on that directly. Instead we resort to
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one of the properties of reversible processes that are especially applied to CTMCs. The first
step is to check and see if a CTMC is not reversible. In the rate diagram if there is an arc
from node i to node j of the CTMC, then there must be an arc from j to i as well for the
CTMC to be reversible. This is straightforward because only if you can go from j to i in the
forward video, you can go from i to j in the reversed video. Note that this is necessary but
not sufficient as we need to verify if the same probability law is followed by both the process
and its reversed process (the requirement of being stochastically identical). For an ergodic
CTMC that has reached the steady state, we study the probability structure of the reverse
process. Tracing the process, denoted by X(t), going backward in time, we first look at the
time spent in each state. Given that the CTMC is in state i at some time t, the probability that
the reverse process has been in this state for an amount of time greater than s is just e−vis.
This is because

P (X(τ) = i, τ ∈ [t− s, t]|X(t) = i) =
P (X(τ) = i, τ ∈ [t− s, t])

P (X(t) = i)

=
P (X(t− s) = i)e−vis

P (X(t) = i)
= e−vis,

where P (X(t − s) = i) = P (X(t) = i) due to the steady state. Thus, going backward in
time, the amount of time spent in state i follows the same exponential distribution as that in
the original process. Next, we need to find the condition under which the jump-to probability
distribution of the reverse process is the same as that in the original process. Again, we
assume that the CTMChas reached the steady state and consider a sequence of state transition
instants going backward in time. That is, starting at time instant n (nth transition instant),
consider the sequence of states reached at these instants, denoted by Xn, Xn−1, Xn−2, ....
It turns out that this sequence of states is itself a Markov chain process with the transition
probabilities, denoted by Qij . According to the definition, we have

Qij = P (Xm = j|Xm+1 = i) =
P (Xm = j,Xm+1 = i)

P (Xm+1 = i)

=
P (Xm = j)P (Xm+1 = i|Xm = j)

P (Xm+1 = i)
=

pjPji

pi
.

To prove that the reversed process is indeed a Markov chain, we must verify that

P (Xm = j|Xm+1 = i,Xm+2, Xm+3, ...) = P (Xm = j|Xm+1 = i).

To confirm this property, we can use the fact that theMarkov property implies the conditional
independence between the past and future given the current state and the independence is a
symmetric relationship. Thus, to ensure that the reverse process has the same probability
structure as the original process, we need Qij = Pij which results in the condition for the
reversible Markov process. That is pjPji = piPij . Such a relation can simplify solving
the balance equations for stationary distributions. The next two properties will enhance
the power of using the time reversibility to find stationary distributions of more complex
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CTMCs. We present them briefly and use them to find the stationary distribution of our
model. For more details on these two properties, we refer to Kelly [7].

Property 1: Joint processes of independent reversible processes are reversible.
Suppose that we have n independent reversible processes, denoted by {X1(t),−∞ <

t < ∞},{X2(t),−∞ < t < ∞},...,{Xn(t),−∞ < t < ∞}. If we are interested in
the joint process {X1(t), X2(t), ..., Xn(t),−∞ < t < ∞}, then it is also reversible and its
steady-state probabilities would just be the product of those of the corresponding states of the
individual reversible processes. As an example, if each process is a one-dimensional BDP,
then the joint process is an n-dimensional BDP which is also reversible. You can verify the
reversible condition in terms of the stationary probabilities and transition rates. A truncated
process is the process of a finite-state space that results from cutting off part of the infinite
state space.

Property 2: Truncated processes of reversible processes are reversible.
Consider a reversible and ergodic CTMC {X(t),−∞ < t < ∞} with infinitesimal

generatorQ = [qij] defined on state space S and steady-state probabilities pj that the CTMC
is in state j for all j ∈ S. Now consider another CTMC {Y (t),−∞ < t < ∞} which is a
truncated version of {X(t),−∞ < t < ∞} defined on state space A such that A ∈ S. By
truncation, we can keep the inter-state transition rates of the truncated process Y (t) the same
as those in the original process X(t) and adjust the diagonal elements of the infinitesimal
generator of Y (t) by letting its negative value equal the sum of the off-diagonal transition
rates in the row. Next we present a stochastic nurse-staffing model.

3.2. A Nurse-staffing model

Consider an inpatient unit that can admit N types of patients. A type i patient, arriving
at the inpatient unit according to an independent Poisson process with rate λi, requires ci > 0
unit of nurse resource per time unit with i = 1, 2, ...N . For example, if c1 = 0.7 and c2 = 2,
it means that each type 1 patient needs 0.7 nurse per hour and each type 2 patient needs 2
nurses per hour if time unit is one hour. Let C be the total number of nurses staffed for the
planning horizon (e.g. one shift). Let Xi(t) be the number of type i patients in the unit at
time t. The staffing capacity constraint can be written as

c1X1(t) + c2X2(t) + · · ·+ cNXN(t) ≤ C.

This constraint makes the state space finite as it controls the admission of patients of N
types. That is whenever the maximum capacity C is fully utilized, new arrivals are denied.
For example, if a type i patient arrives and ci + c1X1(t) + c2X2(t) + · · · + cNXN(t) > C
holds at that instant (i.e., the maximum capacity is exceeded), this patient is rejected. The
type i patient’s stay time in the inpatient unit is assumed to be exponentially distributed with
rate µi. During the entire stay time, each class i patient uses ci unit of nurse.

Due to the finite state space, the multi-dimensional CTMC, {X1(t), X2(t), ..., XN(t)},
has the stationary distribution denoted by

px1,x2,...,xN
= lim

t→∞
P (X1(t) = x1, X2(t) = x2, ..., XN(t) = xN).
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To obtain this stationary distribution, we consider an N -dimensional CTMC with the same
state variables and C = ∞. Such a CTMC has the state space S = ZN

+ . Obviously, the
CTMC of our model is a truncated process of this unconstrained CTMC due to the constraint.
Note that C = ∞ implies that the system can be considered as N independent M/M/∞
queues since the arrival processes are independent. Each process is reversible and the joint
process is also reversible according to Property 1 presented above. Moreover, the stationary
probability of the number of type i patients in the system, denoted by p∞i (j), j = 0, 1, ...,
has a closed-form expression (i.e. Poisson process with parameter λi/µi) as follows:

p∞i (j) = e−λi/µi

(
λi

µi

)j
1

j!
,

where the superscript ∞ indicates C = ∞ (omitting this superscript implies C < ∞, the
truncated or constrained case). Clearly, the stationary distribution for the joint process is
given by

lim
t→∞

P (X∞
1 (t) = x1, X

∞
2 (t) = x2, ..., X

∞
N (t) = xN)

= p∞1 (x1)p
∞
2 (x2) · · · p∞N (xN) =

(
e−

∑N
i=1 λi/µi

) N∏
i=1

(
λi

µi

)xi 1

xi!
.

It follows from Property 2 presented above that the stationary probability for our system
subject to the capacity constraint, denoted by px1,x2,...,xN

, can be written as

px1,x2,...,xN
= M

N∏
i=1

(
λi

µi

)xi 1

xi!
(1)

subject to c1x1 + c2x2 + · · · + cNxN ≤ C. HereM is a constant and can be determined by
the normalization condition as

M =

[ ∑
x1,x2,...,xN :c1x1+c2x2+···+cNxN≤C

N∏
i=1

(
λi

µi

)xi 1

xi!

]−1

.

Although we have obtained the expression forM , it is computationally expensive when the
number of patient types N is getting larger. We outline one approach based on the enumer-
ation of all feasible states via a tree diagram as shown in Figure 1 for an inpatient unit with
three types of patients. With such a tree, we can figure out all feasible states under the con-
straint of C nurses. There are ⌊C/c1⌋+1 trees with 2 stages from the largest tree of k1 = 0
(having most branches) to the smallest tree of k1 = ⌊C/c1⌋ (having only one branch which is
the case of x1 = ⌊C/c1⌋, x2 = x3 = 0. This is because as x1 increases, the number of feasi-
ble values for x2 decreases (i.e., the number of branches in stage 1 reduces); similarly, as x1

or x2 increase, the number of feasible values for x3 decreases (i.e., the number of branches
in stage 2 reduces). Then, we can use the fact that these feasible state probabilities sum up
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x1=k1

:
:

x2=0

x2=k2

x2=
𝐶−𝑘1𝑐1

𝑐2

+

:
:

x3=0

x3=
𝐶−𝑘1𝑐1

𝑐3

+

x3=
𝐶−𝑘1𝑐1−𝑘2𝑐2

𝑐3

+

x3=0

:
:

x3=0

N=3 case

𝑥1 = 0,1, … ,
𝐶

𝑐1
;

𝑥2 = 0,1, … ,
𝐶 − 𝑥1𝑐1

𝑐2

+
;

𝑥2 = 0,1, … ,
𝐶 − 𝑥1𝑐1 − 𝑥2𝑐2

𝑐3

+.

Figure 1. Tree Diagram.

to 1 to determine the parameter M (the normalization condition). Such an approach can be
extended to a general N type customer case with the feasible xi, for i = 1, 2, ...N given by

x1 = 0, 1, 2, · · · , ⌊C
c1
⌋;

x2 = 0, 1, 2, · · · , ⌊C − x1c1
c2

⌋+;

x3 = 0, 1, 2, · · · , ⌊C − x1c1 − x2c2
c3

⌋+;

...

xj = 0, 1, 2, · · · , ⌊C −
∑j−1

i=1 xici
cj

⌋+; for j = 4, 5, · · · , N.

Denote by x̄j(x1, ..., xj−1) = ⌊C−
∑j−1

i=1 xici
cj

⌋+ the upper bound of xj value, which depends
on the set of xi where i = 1, ..., j − 1. Then, we can computeM as follows:

M =

 ⌊ C
c1

⌋∑
x1=0

x̄2(x1)∑
x2=0

· · ·
x̄N (x1,...,xN−1)∑

xN=0

N∏
i=1

(
λi

µi

)xi 1

xi!


−1

.

Remark: (1) The computational complexity becomes higher when the number of patient
types is getting larger. Fortunately, in a practical inpatient unit, the number of patient types is
low. This makes our approach applicable in real situations. (2) Since we consider the system
as a queueing system with multiple servers without a waiting buffer (i.e., M/M/s/s), the

63



© Su, Sheu, Wang

model presented can be called an Erlang-B based. If we keep a wait list for patients instead
of rejecting patients when all beds are occupied, we may consider the M/M/s/K with
K > s based model (i.e., we can keep a waitlist up toK − s patients). Such a model, called
“inpatient unit with waitlist”, can be analyzed similarly.

With the stationary distribution, we can develop the expected cost function of the nurse-
staffing level and determine the optimal staffing level that minimizes the cost function. The
expected cost functionmay consist of the “expected cost of rejecting patients” plus the “nurse
hiring cost” for inpatient units without waitlist or the “expected waiting cost” plus the “nurse
hiring cost” for inpatient units with waitlist. In the next section, we will demonstrate the
determination of the optimal staffing level for an inpatient unit serving two types of patients.

It is worth noting that this model is general enough to analyze a variety of stochastic
service systems besides the nurse-staffing problem of our interest. For example, it can be
utilized to analyze the multi-media traffic problem in the internet.

4. Numerical Illustrations

For numerical illustrations, we consider an inpatient unit that serves two types of pa-
tients without waitlist. Inpatient units in a hospital includes intensive care patients, surgery
patients, and rehab patients. Consider a cardiology/General Internal Medicine Inpatient Unit
that admits two types of patients, cardiology acute care (CAC) called type 1, and general in-
ternal medicine (GIM) called type 2. A key constraint for admitting a patient is the number
of acute care nurse practitioners (denoted by RN - registered nurses with advanced train-
ing) available. Let C be the total number of RNs available. Each CAC patient admitted
requires c1 RNs and each GIM patient admitted requires c2 RNs. Assume that (a) patients
of type n arrive at the unit according to an independent Poisson process with rate λn; and
(b) each admitted patient type i spends an exponentially distributed time with rate µn for
n = 1, 2. Let X1(t) and X2(t) be the number of type-1 and type-2 patients at time t. Then
the two-dimensional CTMC {(X1(t), X2(t)), t = 0} will reach steady-state.

We nowwrite down the stationary probabilities and related performancemeasures of this
model based on the structure of the solution for the general model. Due to the linear capacity
constraint c1X1(t) + c2X2(t) ≤ C, the state space is finite and the boundary states can be
determined in two directions. These two directions will determine two types of boundary
states, calledX1 boundary andX2 boundary states. For a given x2 = j with j = 1, ..., ⌊ C

c2
⌋,

the feasible state is (x1, j)where x1 = 0, 1, ..., ⌊C−jc2
c1

⌋+. Here ⌊x⌋ is the lower floor function
that gives the greatest integer less than or equal to x and ⌊x⌋+ = max(⌊x⌋, 0). Thus, X1

boundary state is (⌊C−jc2
c1

⌋+, j)where j = 0, 1, ..., ⌊ C
c2
⌋. This boundary state set is denoted by

SB
X1
. Similarly, For a given x1 = i, the feasible state is (i, x2) where x2 = 0, 1, ..., ⌊C−ic1

c2
⌋+.

Thus, X2 boundary state is (i, ⌊C−ic1
c2

⌋)+ where i = 0, 1, ..., ⌊ C
c1
⌋. This boundary state set is

denoted by SB
X2
. Then the double boundary state set is SB

X1,X2
= {(X1(t) = i,X2(t) = j :

(i, j) ∈ SB
X1

∩SB
X2
};X1 only boundary state set is {(X1(t) = i,X2(t) = j : (i, j) ∈ SB

X1,X2
̸

SB
X2
}; and X2 only boundary state set is {(X1(t) = i,X2(t) = j : (i, j) ∈ SB

X1,X2
̸ SB

X1
}.
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According to the solution of the general model, we have the stationary probabilities as

pij = lim
t→∞

P (X1(t) = i,X2(t) = j) = M

(
λ1

µ1

)i (
λ2

µ2

)j
1

i!j!
,

i = 0, 1, ..., ⌊C
c1
⌋; j = 0, 1, ..., ⌊C − ic1

c2
⌋+,

where

M =

⌊ C
c1

⌋∑
i=0

⌊C−ic1
c2

⌋+∑
j=0

pij


−1

.

The performance measures, such as the expected number of patients in the system and the
blocking probability of each type, can be obtained based on the stationary probabilities. For
example, under a certain cost structure, we can construct a cost function for the system.
Assume that there are two types of costs that are critical from the customer service and
operating cost perspectives. The first type is the cost of rejecting a patient of either type due
to the system blocking (i.e. no room for admitting a patient). Let Ln be the cost of rejecting
a type n patient, n = 1, 2. and let h be the cost of hiring one RN per time unit. Then the
total expected cost per time unit, denoted by g, is given by

g = λ1L1

⌊ C
c2

⌋∑
j=0

p
(⌊C−jc2

c1
⌋,j) + λ2L2

⌊ C
c1

⌋∑
i=0

p
(i,⌊C−ic1

c2
⌋) + hC.

Clearly the first two terms are decreasing in C and the last term is increasing in C.
Numerically, we can determine the optimal C that minimizes the expected cost rate g.

As a numerical example, consider a system with c1 = 2, c2 = 1, λ1 = 2, λ2 = 3, µ1 = 0.5,
and µ2 = 1 and varying C values. The normalization constant is

M =

C/2∑
i=0

C−2i∑
j=0

(
λ1

µ1

)i (
λ2

µ2

)j
1

i!j!

−1

.

Figure 2 shows g as a function ofC for h = 16, L1 = 100 and L2 = 20. The optimal number
of RNs in this example is 8. Based on this performance measure and Erlang-B formulas, we
can also evaluate the benefit of completely sharing admission policy compared with the two
dedicated systems for the two types of patients.

Robustness test via Arena Simulation
To examine the robustness of the results, we consider the same model with more general

distributed service times (or the length of stay - LOS). All other parameters such as arrival
rates, service rates, and the number of nurses required per hour for each patient are the same
as those above. An Arena model is developed with the system configuration as as shown in
Figure 3. However, instead of exponential distributed LOS (or service times), we consider
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Figure 2. Expected total cost per unit time v.s. total number of RNs available.

the more flexible distributions for the LOS that have been confirmed in several empirical
studies (see Dehouche et al. [4]). The first LOS distribution is Gamma distribution with
shape parameter, denoted by α, and scale parameter, denoted by β. Then the mean is αβ
and the variance is αβ2. For each type of patients, we assume that the mean service time
remains the same as that in the example of Chapter 3. Namely, the mean service time for
type 1 (2) patients is 2 (1). That is for LOS of type 1, α = 1, β = 2 and for LOS for type 2,
α = 0.5, β = 2.

We run the simulation model for 10 replications with 8 hours as the length of each repli-
cation. Figure 4 shows the cost behavior of such a system based on the simulation results.
We have observed a similar total expected cost function in this Gamma distributed LOS case
as that in the exponentially distributed LOS case presented in Figure 2.

Next, we test the heavy-tailed LOS case. It is well-known that typical heavy-tailed
distributions include Lognormal, Pareto, Cauchy, and Weibull distributions. These heavy-
tailed distributions have specific characteristics and applications. While Parato distribution
and Lognormal distribution may be applicable in modeling financial data with heavy tails,
Weibull distributions are commonly utilized in modeling patient LOS in hospital. Therefore,
we examine the nursing staffing problem with Weibull distributed LOS. Again, we keep all
other parameters the same as before except for the LOS. We first give a brief introduction to
Weibul distribution for modeling hospital LOS.

Weibull Distribution Overview: The Weibull distribution is characterized by two pa-
rameters: - Shape parameter (k): Determines the shape of the distribution. - Scale parameter
(λ): Stretches or compresses the distribution along the horizontal axis.

The probability density function (PDF) for the Weibull distribution is given by:

f(x; k, λ) =
k

λ

(x
λ

)k−1

e−(x/λ)k
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Figure 3. Arena Simulation Model for the Nursing Staffing Problem with Gamma
distributed LOS

Figure 4. Cost function for the Nursing Staffing Problem with Gamma distributed LOS
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Parameter Ranges for Heavy-Tailed Weibull: To model a heavy-tailed length of stay
in a hospital using a Weibull distribution, we focus on the shape parameter k being less than
1. This makes the distribution heavy-tailed, implying a relatively high probability of long
stays.

In our nursing staffing problem, to keep the mean service times the same as those used
in the previous examples, we choose the following parameters:

For type 1 patients: - Shape parameter (k): 0.5 ≤ k < 1. Let k = 0.7 - Scale parameter
(λ): λ. Let λ = 2

For type 2 partients: - Shape parameter (k): 0.5 ≤ k < 1. Let k = 0.7 - Scale parameter
(λ): λ. Let λ = 1

Using the Weibull distributed LOS, we can model the LOS that often shows a heavy-
tailed pattern, where a significant portion of patients have extended stays due to compli-
cations or recovery times. Knowing the tail behavior helps hospitals plan resources and
manage risks associated with prolonged stays. The exact values for k and λ should be es-
timated based on historical data using techniques such as maximum likelihood estimation
(MLE). These parameter values will depend on the specific hospital or patient population.
Larger λ values might be used in hospitals dealing with more severe cases (e.g. longer LOS
cases)

This example provides a practical framework for modeling hospital length of stay with
a heavy-tailed Weibull distribution. Adjusting the shape and scale parameters allows flexi-
bility to fit the distribution to observed data. As illustrated in Figure 5, compared with the
exponential and Gamma distributed LOS cases, this heavy-tailed LOS case has a higher av-
erage cost rate due to higher rejection cost. However, the optimal staffing level is reduced
from 8 to 6. This is an interesting and counter-intuitive result.

Overall, these simulation results confirm the general cost behavior in nurse staffing prob-
lem discovered in our queueing (quantitative) model.

5. “Grouping 2” Method
As illustrated in the numerical section, the problem with two types of patients is easier

to compute. This observation motivates us to propose an approximation method to solve a
large scale nursing-staffing problem with more than two types of patients. The main idea
is to divide N -classes of patients into N/2 groups of two types. For each group of two
types, we can utilize the procedure developed to determine the optimal staffing level C by
minimizing its operating cost. To make it simple, we assume that N is even (for the odd N ,
just figure out the number of groupings of 2 forN +1 and know that there is one group with
only one type of patients). Denote by CN

n the number of combinations if taking n objects
out of N distinguished objects. Then, there will be

k =

(
N
2

)(
N−2
2

)(
N−4
2

)
· · ·

(
2
2

)(
N
2

)
!

(2)
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Figure 5. Cost function for the Nursing Staffing Problem with Weibull distributed LOS
with heavy-tail

different possible groupings of two. For each possible groupings of two, indexed by j with
j = 1, ..., k, we can figure out the optimal staffing level Cj

i and its associate cost g
j
i , where

i = 1, 2, ..., N/2 for each group i. Then, compute the total staffing level Cj =
∑N/2

i=1 Cj
i

and total cost gj =
∑N/2

i gji . The optimal staffing level for cost minimization would be Cj∗

where j∗ = argminj∈1,2,...,k gj . Here we present an example of N = 4. With the hiring cost
h = 16, the other parameters of the system are summarized in the table below.

Table 1. Parameters for the system with four types of patients with i = A,B,C,D.

Parameters
for type i
patients

Patient Type A B C D

ci 2 1 2 1

λi 2 3 2 1

µi 0.5 1 0.8 1.2

Li 100 20 60 60

Based on (2), the number of possible grouping 2 would be k = (
(
4
2

)(
2
2

)
)/(4/2)! = 3.

The optimal staffing levels and their associated costs are given in Table 2.

Table 2. Optimal solutions for three grouping scenarios.

j Groups C∗
1 g∗1 C∗

2 g∗2 C∗ = C∗
1 + C∗

2 g∗ = g∗1 + g∗2
1 (AB)(CD) 8 245.20 6 154.13 14 399.33

2 (AC)(BD) 10 286.05 4 99.32 14 385.37

3 (AD)(BC) 8 217.54 4 177.74 12 395.28
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Total cost of grouping 2 as a function of staffing level for (AB) and (CD) scenario.

Figure 6. Optimal staffing levels and their associate total costs for (AB) and (CD),
respectively.

Total cost of grouping 2 as a function of staffing level for (AC) and (BD) scenario.

Figure 7. Optimal staffing levels and their associate total costs for (AC) and (BD),
respectively.

Total cost of grouping 2 as a function of staffing level for (AC) and (BD) scenario.

Figure 8. Optimal staffing levels and their associate total costs for (AD) and (BC),
respectively.
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Among the three possible grouping 2 scenarios, the optimal scenario is (AC), (BD)
with a minimum cost of 385.37 dollars and staffing level at 14. The average total cost rates
for these combination scenarios are shown in Figures 6, 7, and 8. To get an idea of howmuch
cost reduction the grouping 2 approach can result, we compute the total cost of a non-pooling
system with the proportional allocation of a fixed service capacity (e.g., 14 nurses) based on
Liαi rule, where Li is the cost of losing a type i customer and αi = λi/µi, the loading ratio.
Assume that the fixed total service capacity is C. Under the Liαi rule, the staffing level
dedicated for type i customers, denoted by Ci, where i = 1, 2, ..., N , is determined by

C1

L1α1

=
C2

L2α2

= · · · = CN

LNαN

,

C1 + C2 + · · ·+ CN = C.

(3)

In our numerical example, we haveN = 4 (four types of patients). Solving (3) withLAαA =
400, LBαB = 60, LCαC = 150 and LDαD = 50 as

CA

400
=

CB

60
=

CC

150
=

CD

50
,

CA + CB + CC + CD = 14,

we obtain the solution CA = 8.48, CB = 1.27, CC = 3.18 and CD = 1.06,, which suggests
an integer solution of CA = 9, CB = 1, CC = 3, and CD = 1 with the total of 14. For
each dedicated system, the probability of losing a customer is the Erlang B formula for the
blocking probability given by

P (losing a type i patient) =
α
⌊Ci/ci⌋
i

⌊Ci/ci⌋!

1 + α + α2

2!
+ · · ·+ α⌊Ci/ci⌋

⌊Ci/ci⌋!

,

where i = A,B,C,D. Then the cost of losing patients for system i would be

λiLiP (losing a type i customer), where i = A,B,C,D.

It is easy to find that the total cost for this setting (cost of losing patients plus nurse hiring
cost) is given by

gABCD =
∑

i=A,B,C,D

λiLiP (losing a type i customer) + h
∑

i=A,B,C,D

Ci. (4)

Substituting the numerical values for the parameters in (4) yields g = 476.35 dollars, which
is about 24 percent more than the optimal grouping 2 scenario ((AC)(BD)) cost of 385.37
dollars at the same total staffing level of 14. Note that other possible integer solutions can
be also evaluated. For example, rounding down all non-integer capacities gives an integer
solution of CA = 8, CB = 1, CC = 3 and CD = 1, which has a total of 13 nurses hired.
In contrast, rounding up all non-integer capacities gives another integer solution of CA =
9, CB = 2, CC = 4 and CD = 2, which has a total of 17 nurses hired. Evaluating the total
costs of these solutions shows the advantages of polling customer service.
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6. Conclusions
In this paper, we have addressed the issue of determining the optimal nurse staffing level

for inpatient units in hospitals. Considering the stochastic nature of arrival and service pro-
cesses, we modeled the service system as a stochastic knapsack problem. By leveraging the
time reversibility of a continuous-time Markov chain (CTMC), we obtained the stationary
distribution of the number of patients in the system. This distribution allows us to compute
various performance measures for the system. Under a defined cost structure, we determine
the optimal nurse staffing level that minimizes the long-term average cost. To test the robust-
ness of the model, we developed Arena simulation models to evaluate more realistic lengths
of stay (LOS) for healthcare facilities, finding results consistent with those predicted by the
analytical CTMC model.

A key feature of our model is its ability to handle staffing problems involving multiple
patient types. However, the computational complexity can become an issue with a large
number of patient types. Fortunately, in practical inpatient units, the number of patient types
is typically small, making our model applicable in real decision-making situations.

A potential future direction for this research is to extend the model to incorporate sce-
narios with patient waitlists. Another extension is to consider the time-varying arrivals to
inpatient units, which leads to a special class of time-varying queues. For the past research
on time-varying queues, we refer to Whitt [12].
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