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Abstract: Self-checkout services have gained popularity across various industries, offering 
Service systems issue numbered tickets for upon arrival customers without physical queues 
are popularly applied in public sectors. These systems are managed by ticketing technology 
and thus are different from those in common classical queues. This paper introduces a novel 
ticket queue that accounts for impatient customers and a single vacation policy. A schematic 
state-transition-rate diagram with the associated flow-balance equations is presented. The 
block-partitioned infinitesimal generator is provided in matrix form and the corresponding 
steady-state probabilities are solved recursively using the matrix-geometric method. We 
also derive explicit expressions of critical metrics relative to the performance measures. 
Numerical sensitivity analysis and graphical results are presented to assess the influence of 
various parameters on system characteristics. To reduce the computational complexity and 
enhance the analysis efficiency, we simplify the model and provide an efficient 
approximation method. Furthermore, a stepwise regression model is constructed to estimate 
the expected number of customers in the system without the need for complex matrix 
manipulations. Finally, applying the NSGA-II algorithm, a triple-objective optimization 
problem is investigated to determine the optimal operating condition with the minimum cost. 

Keywords: balking customers, matrix-geometric method, performance analysis, single 
vacation, ticket queue, triple-objective optimization 

1. Introduction 

In recent years, considerable concern has arisen over customer service quality and 
system operational efficiency in different industries, such as manufacturing, transportation, 
and network communication. To analyze and manage service systems with different 
characteristics, numerous investigations in the literature have introduced many queueing 
models. Part of them assumes customers may leave the system before receiving service due 
to impatience, i.e., balking behavior. Baccelli et al. [1] first proposed a single-server queue 
with impatient customers. They studied the relationship between the virtual waiting time 
and the actual offered waiting time. Most impatient customers are also strategic and 
therefore, the information provided by the system may affect the customers’ decision-
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making. Mandelbaum and Shimkin [17] investigated abandonments from the queue in an 
invisible multi-server queue with impatient customers. With the consideration of waiting 
costs and service benefits, they proved the existence and uniqueness of the equilibrium 
solution. Li and Wang [16] considered catastrophes in a single-server retrial queue with 
constant retrial rate. They derived the equilibrium joining/balking strategies under 
unobservable and observable cases with explicit theoretic proof. Recently, Ke et al. [8] 
discussed retrial and balking behavior in an unreliable service system. They employed the 
Probabilistic Global Search Lausanne algorithm to solve the cost optimization issue and 
applied the obtained results to an application of a telephone medical consulting service 
system. These days, many financial institutions, government agencies, and retail stores lack 
physical queues. An arriving customer can see the number on the ticket that he or she is 
issued and the number of tickets currently being served. Based on the difference between 
the two numbers, it is possible to estimate the current waiting time. In these situations, 
impatient customers commonly opt not to join the queue (balk), so the actual waiting time 
is less than expected. Consequently, compared with classical service systems with physical 
queues, customers' balking more significantly affects the characteristics of ticket queues. 
Subsequently, we provide a brief review of related literature in ticket queues. 

For a single-server Markovian ticket queue with impatient customers and a threshold 
balking policy, Xu [26] developed an efficient scheme by which to approximate the 
performance of the ticket queue. Kuzu [12] introduced a multi-server Markovian ticket 
queue with balking and reneging behaviors and then compared the performance of this ticket 
queue with a physical queue. In a series of surveys, Kuzu [13] determined that the preference 
of customers for ticket queues over physical queues translates into increased patience. Based 
on their investigation of a single-server Markovian ticket queue with reneging customers, 
Ding et al. [3] developed an approximation procedure to numerically solve steady-steady 
results with an extension to multi-server systems. Considering the situation of customer 
abandonment, Jennings and Pender [7] conducted a comparative analysis of the ticket 
queues and standard queues with physical waiting lines. They proved the heavy traffic limit 
theorem for ticket queues and standard queue processes. Kerner et al. [10] proved that no 
threshold strategy can attain the Nash equilibrium for an infinite Markovian ticket queue 
with a homogeneous cost-reward function. They also demonstrated that the double threshold 
strategy is optimal for a cost function and the cost function is an increase function in waiting 
time. Kuzu and Soyer [15] established a Bayesian model to predict customer abandonments 
in ticket queues. Based on actual abandonment data collected from a bank, numerical results 
and managerial insights were presented. Kuzu et al. [14] conducted the first empirical 
analysis of customer behaviors in ticket queues with a focus on forecasting and dynamic 
decision-making. Hanukov et al. [4] studied a ticket queue with a nonhomogeneous 
population comprising regular and strategic customers. They derived steady-state results 
with the sojourn time and provided a novel approach to economic analysis aimed at 
determining the optimal mean orbiting time of strategic customers. For further research on 
ticket queues, the readers are referred to Hanukov et al. [5], Poomrittigul et al. [20], and 
Xiao et al. [25]. 

The above studies have suggested the importance of customer’s balking behavior in 
evaluating system performance in ticket queues. In addition to customers’ balking, server 
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vacation is a common attribute in most practical applications. Ke et al. [9] and Upadhyaya 
[24] provided comprehensive reviews of queueing systems with vacations. For a single-
server Markovian queue with a single working vacation and multiple vacations, Tian and 
Wang [22] conducted a pricing analysis in unobservable cases. The customers’ equilibrium 
and the socially optimal strategies were derived under a linear reward-cost structure. Jain et 
al. [6] proposed a generalized Markovian queue by including the characteristics of working 
vacation, retrial, and customers’ balking. They employed the probability generating function 
technique to obtain the steady-state probabilities as well as several system performance 
metrics. Tian et al. [23] investigated a Markovian queue with working vacation and 
Bernoulli interruptions. Four scenarios with different levels of system information were 
considered for examining the behavior of strategic customers. The customer’s equilibrium 
and social-optimal strategies were derived explicitly. Kumar and Jain [11] discussed a 
single-server queue with balking, a bi-level service network, and a bi-level vacation policy. 
They proved that a mixed vacation policy can tackle the congestion problem economically 
and reduce the mean waiting time. Recently, Sun et al. [21] analyzed customer balking 
behavior in single-server observable queues with geometric abandonments and two types of 
N policy. They determined that a residual vacation time reduces the likelihood of customers 
joining. 

Although ticket queues and server vacations are both very common in real-world 
service systems, however, no research introduces vacation policy in ticket queues. Thus, 
this research performs the steady-state analysis on a single-server ticket queue with a single 
vacation policy. The purpose is to examine the effects of server vacation on the system 
performance. Our contributions include: 

(1) This research firstly incorporates the single vacation policy in a ticket queue with 
balking customers, which has never been examined in literature;  

(2) To simplify the analysis procedure, an approximation model is introduced to enhance 
the computation efficiency and improve implementation convenience; 

(3) We establish a regression model for practitioners and system managers to rapidly 
evaluate the expected number of customers based only on the estimated system 
parameters without complex calculations. 

(4) For management decision-making, the optimal service and vacation rates for the 
triple-objective problem are tabulated with graphical displays. 

In the next subsection, a practical application that the proposed model can be applied is 
provided. 

1.1. Practical application 

Ticket queues can be widely observed in different industries, such as pharmacies, 
government offices, financial institutions, and retrial stores. In these practical service 
systems, the service provider may temporarily leave the system for other tasks whenever 
the system becomes empty. These may reduce service efficiency, increase customer waiting 
time, and influence the system’s performance. For example, take-a-number machines for 
queue call systems are common equipment in banks. The demands from customers who 
come to the bank can be roughly classified into two categories: document application 
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processing (business loans, financial advisory, insurance, valuation services, etc) and 
financial teller service (account handling, cash withdrawal, currency exchange, inter-bank 
remittances, wealth management, etc). The numbers assigned to customers belonging to two 
categories are assumed independent. That is, there are two ticket queues in this service 
system. When an arriving customer finds the number of tickets in front of him/her is larger 
than a certain threshold, he/she may determine not to join the queue because the anticipated 
waiting time is too long, i.e., customers’ balking behavior. Considering a bank counter 
responsible for demands of document application, when the service for the last customer is 
completed and there are no other customers in the corresponding ticket queue, the staff may 
temporarily leave the job for other secondary tasks (document delivery/archiving, computer 
file upload, support of financial teller service, to the restroom, etc). Often, these works are 
processed in batches while waiting for a break, and thus, the staff will return to his/her 
position, i.e., single vacation policy. With the above characteristics, the proposed ticket 
queue and the corresponding analysis results can be employed to evaluate the system 
performance and efficiency of the investigated application. 

The remainder of this paper is organized as follows. Section 2 introduces the 
mathematical notation and model assumptions of the proposed ticket queue. The state 
transition-rate diagram for the proposed model is provided. Section 3 outlines our steady-
state analysis based on the matrix-geometric method as well as an approximation procedure 
aimed at facilitating the solution process. In Section 4, we outline the closed-form 
formulations of critical performance metrics as well as sensitivity analysis aimed at 
identifying decisive parameters under a set of prescribed values. We also present a graphical 
illustration of the numerical results used to assess the accuracy of the approximations. 
Furthermore, we present a step-wise regression model for the estimation of the expected 
number of customers in the system. Finally, a tipple-objective optimization problem for 
determining the optimal service and vacation rates is performed in Section 5. We apply the 
NSGA-II algorithm to obtain the Pareto-optimal frontier graphically and tabulate partial 
non-dominated solutions. Conclusions and avenues for future research are presented in 
Section 6. 

2. Model and Preliminaries 
This paper investigates a ticket queue with balking customers and single vacation policy. 

The notation and assumptions underlying the mathematical modeling are as follows: 
 The customer arrival process is assumed to follow a Poisson distribution with mean 

arrival rate λ . 
 The service time for each customer is assumed to follow an exponential distribution 

with mean service rate µ . 
 The length of the vacation period is assumed to follow an exponential distribution 

with mean 1φ− . When the server completes a vacation with no customers waiting in 
the queue, he/she awaits idly for a new arrival, i.e., single vacation policy. 
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 Upon arriving at the system, each customer is issued a numbered ticket. Let D  
denote the ticket position, which is defined as the number difference between his/her 
ticket number and the displayed number. 

 A new arrival customer will balk if the obtained ticket position is greater than or 
equal to a given threshold, denoted by K  . Thus, the value of K   is positively 
correlated with the patience of the customer. Once a customer decides to join the 
queue, no reneging is allowed. 

 The only information available to customers in the ticket queue is the difference 
between the number of tickets currently receiving service and the number on their 
ticket. The number of customers in the system is indicated by N . 

 Neither the service provider nor the customers know which customers have balked 
until the corresponding numbers have been called. The system can only serve one 
customer at a time on a first-come-first-served basis. The stochastic processes 
involved in this model (i.e., arrival, service, and vacation) are mutually independent.  

In accordance with the above notation and assumptions, the system in a steady state can 
be defined in vector form as ( ) ( )1 2, , , ,..., nt t tω ω≡ ≡x t , where 0ω = ( 1ω = ) indicates that 
the server is working normally (on vacation). The variable it ∈   is a positive integer 
indicating the number of tickets issued between the thi  joining customer and the ( )1 thi +  
joining customer. As n  is equal to the number of customers in the system, we know that 
the length of the state vector n  cannot exceed the balking threshold K . Furthermore, the 
cumulative number of tickets between the first customer and the ( )1 thn −   customer, 

1

1

n
ii

t−

=∑  , must be less than the balking threshold K  . The associated state space can be 
described as follows: 

( ) { }
1

1 2
1

, , ,..., 0,1 ;  ;  ;  
n

n i i
i

t t t t n t Kω ω
−

=

 = ∈ ∈ ∈ < 
 

∑S   .    (1) 

Suppose the balking threshold 15K = , if we expand the compact state ( )0,3,2,2,4=x  as 

( ) ( )0,3,2,2,4 0,  1,0,0,  1,0,  1,0,  1,0,0,0=  , then the server is working normally. We also 
know that the first, fourth, sixth, and eighth customers joined the queue, but the other 
customers did not. The number of customers in the system is 4N =  and the ticket position 

3 2 2 4 11D = + + + =   indicates the number of customers observed by the next arriving 
customer, which is significantly less than the number of customers actually in the system. 
Figure 1 depicts the state transitions for the investigated ticket queue with 3K =  . For 
illustration purposes, if the system is currently in the state ( ) ( ), 0,1, 2ω= =x t , the next 

state after a transition may be ( )0,2=x   or ( )0,1,3=x  , which are associated with the 
events of customer departure and the arrival of a new customer, respectively. Moreover, if 
the system is current in ( )1,1,2 , the status will transfer to ( )0,1,2  once the vacation period 
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ends. Figure 2 presents a schematic diagram of the state transitions in the proposed ticket 

queue, where { }1 •  denotes the indicator function and 
1

1

n

i
i

t
=

=∑t  denotes the total tickets 

in ( )1 2, ,..., nt t t=t .  

 
Figure 1. State-transition-rate diagram for the ticket queue with balking customers and 

single vacation policy ( 3K = ). 

Working normally 
( 0ω = ) 

On vacation 
( 1ω = ) 
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Figure 2. Schematic diagram of state transitions in ticket queue with balking customers 

and single vacation policy 
With the state space provided in Equation (1), the steady-state probability can be denoted 
by pω

t , ( ),ω ∈t S . Note that this system forms an ergodic Markov chain as long as the 
balking limit K is finite. The process of analysis can be simplified by partitioning the system 
state according to the last variable nt  to obtain 

( ) ( ) ( ) { }
1

1 1 2
1

0,0 1,0 , , ,..., 1;  0,1 ;  ;  ;  
n

n n i i
i

t t t t t n t Kω ω
−

=

 = ∪ ∪ = ∈ ∈ ∈ < 
 

∑T   , (2) 

and  

( ) { }
1

1 2
1

, , ,..., ;  0,1 ;  ;  ;  
n

j n n i i
i

t t t t j t n t Kω ω
−

=

 = = ∈ ∈ ∈ < 
 

∑T   , 2,3,...j = . (3) 

Note that the number of states collected in 1T  and jT , 2,3,...j =  are 2 2K +  and 2K , 
respectively. Ordering these states lexicographically allows us to represent distribution 

( ) ( ){ },  ,pω ω ∈t t S  using vector [ ]1 2 3, , ,...=Π π π π . This can be expressed as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 0 1 1 1 1 1

1 0 1 1,1 2,1 1,1,...,1 0 1 1,1 2,1 1,1,...,1, , , ,..., ,  , , , ,...,p p p p p p p p p p =  π ,   (4) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 1 1 1 1

1, 2, 1,1,..., 1, 2, 1,1,...,, , ,..., ,  , , ,...,j j j j j j j j jp p p p p p p p =  π , 2,3,...j = ,  (5) 

which are associated with each partitioned sub-space. Based on the above notation and 
definitions, the proposed ticket queue is a quasi-birth-and-death process (Neuts [19], 
Chapter 3) with the following block-partitioned infinitesimal generator: 



© Wu, Shu 

38 

1 1 1
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3 3 2 3

1 1 2 1

2
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K K K

K K K

K K

− − −

+

+

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

T A B
T C A B
T C A B

Q T C A B
T C A B

T C A B
T C A

   



  

.   (6) 

Let O


  be a square zero matrix of order    and I


  be an identity matrix of order   , 
while 0  is a row zero vector of appropriate dimensions and e  is a unit row vector of 
appropriate dimensions. Solving the balance equation =ΠQ 0   and the normalization 
condition 1=Πe   allows us to compute steady-state probability Π  . Identifying the 
locations of non-zero elements in Q  is complicated by their relationship with the balking 
threshold K ; to illustrate, we provide a special case where 3K = . 

When 3K = , the submatrices employed in Q  include 1A , 2A , iB , 1, 2,3i =  and 

iC , 2,3i = . Defining δ λ µ= +  and τ λ φ= +  allows us to represent 1A  and 2A  as 
follows: 

11 12
1

13 14

 
=  
 

A A
A

A A
 and 21 4

2
23 24

 
=  
 

A O
A

A A
.    (7) 

11

λ λ
δ λ
µ δ λ
µ δ

µ δ

− 
 − 
 = −
 − 
 − 

A , 14

τ λ
τ λ

τ λ
τ

τ

− 
 − 
 = −
 − 
 − 

A . 

12[2,1]A  is a square matrix of order 5 with only one non-zero element 12[2,1] µ=A  and 

13 5φ=A I . Similarly, the submatrices in 2A  are 23 4φ=A I , 24 4τ= −A I , and 

21

δ
µ δ
µ δ

µ δ

− 
 − =
 −
 − 

A . 

1B  is a 10 8×  matrix with nonzero elements 1 1 1 1[4,3] [5,4] [9,7] [10,8] λ= = = =B B B B . 

2B  is a 8 8×  diagonal matrix with diagonal elements [0, , , ,0, , , ]λ λ λ λ λ λ  and 3 8λ=B I . 
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2C  is a 8 10×  matrix with nonzero elements 2 2[2, 4] [6,10] λ= =C C  and 2[1,6] µ=C . 

3C  is also a 8 10×  matrix with only one nonzero element 3[1,6] µ=C . 

3. Steady-state Analysis 
Newly-arriving customers balk if and only if the obtained ticket position exceeds the 

balking threshold, which means that if K   is finite, then the system will remain stable, 
regardless of the traffic intensity. Applying the matrix analytic method and expanding the 
balance equation =ΠQ 0  implies the following: 

1

1 1
2

,
K

i i i K
i i K

− ∞

= =

+ + =∑ ∑π A π C π C 0           (8) 

1 2 ,  1, 2,..., 1,i i i i K++ = = −π B π A 0           (9) 

 1 2 ,  , 1,....i K i i K K++ = = +π B π A 0          (10) 

Based on a technique similar to the well-known matrix-geometric method, we can define 
the rate matrix as ( )1

2K
−= −R B A . Thus, Equations (8)-(10) imply the following: 

 ,  1, 2,...i K
i K i K K−= = + +π π R ,          (11) 

 1 1 1 2 1
1

...
i

i i j
j

φφ φ φ+
=

= = ∏π π π , 1, 2,3,..., 1i K= − ,       (12) 

where ( )1
2j jφ −= −B A , 1, 2,3,...i = . Substituting these equations into Equation (8) results 

in the following matrix-form balance equation for 1π : 

 ( )
1 11 1

1 1 12
2 1 1

K

i KK

j i j K
i j j

φ φ
− −− −

= = =

 
+ + − = = 

 
∑∏ ∏π A C I R C π Ψ 0 .      (13) 

The normalization condition can be represented as 

 ( )
1 11

1T T
1 1

2 1 1

1
i KK

j j
i j j

φ φ
− −−

−

= = =

   + + − = =  
   

∑∏ ∏π e I R e π z .       (14) 

Thus, 1π  can be obtained by simultaneously solving Equations (13) and (14). 

3.1. Approximation method 

With Figure 1, it can be expected that the system state transition is very complicated 
once the value of the parameter K  is large. The fact that the number of states considered 
in the subspace 1T   is 2 2K +   makes it an exponential function of parameter K  . For 
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example, if 5K =  , then the cardinality of 1T   is 5
1 2 2 34= + =T  . If 10K =  , then 

10
1 2 2 1026= + =T  is approximately thirty times as much as the former. This means that 

the computation time and memory space required for the above procedure rapidly increases 
with the value of K  . Thus, we developed a heuristic solution to improve efficiency in 
computing the ticket queue for large K  values. Keeping track only of the total number of 
customers who join or balk while disregarding the sequence would result in a system of 
reduced complexity, which disregards intermix situations. The fact that the balking behavior 
in the reduced system is identical to that in the original system, implies their stochastic 
characteristics are also similar. The state space for the reduced ticket queue can be expressed 
as follows: 

( ) ( ) ( ) { }{ }0,0 1,0 , , 0,1 ;  0,1, 2,..., ;  R J B J K Bω ω= ∪ ∪ ∈ = ∈S  .  (15) 

where ( )0,0  and ( )1,0  respectively indicate that the system is empty when the server is 
idle and busy. Variables J  and B  respectively denote the number of joining customers 
(including the customer being served, if any) and the number of balking customers in the 
system. The associated steady-state probability is denoted by 0

0q  , 1
0q  , and ( ),J Bqω  , 

( ), , RJ Bω ∈S . The state space RS  can be partitioned as: 

and  

( ) { }{ }, , 0,1 ;  0,1, 2,..., ;  1R
j J B J K B jω ω= ∈ = = −T , 2,3,...j = .   (17) 

 
Figure 3. Schematic diagram of state transitions of the reduced ticket queue 

Unlike the cardinality mentioned above 1 2 2K= +T  , the cardinality of 1
RT   is 

1 2 2R K= +T , which is a linear function of K . For example, if 10K = , then the cardinality 
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of 1
RT   is 1 22R =T  , which is only 2.1% of 1 1026=T  . Figure 3 presents a schematic 

diagram of the reduced ticket queue. Note that the state transitions in the reduced system 
are significantly simpler than those in the original system. The approximated steady-state 
probabilities obtained from the reduced system are denoted by 1 2 3, , ,...a a a a =  Π π π π , where 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 0 1 1 1 1

1 0 01,0 2,0 ,0 1,0 2,0 ,0, , ,..., , , , ,...,a
K Kq q q q q q q q =  π ,      (18) 

and 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0 1 1 1
1, 1 2, 1 , 1 1, 1 2, 1 , 1, ,..., , , ,...,a

j j j K j j j K jq q q q q q− − − − − −
 =  π , 2,3,...j = ,   (19) 

which are associated with each partitioned sub-space. With the exception of the two 
additional states, this is similar to the solution procedure mentioned earlier for the original 
system, wherein the matrix-analytic method can be used to establish steady-state 
probabilities for the reduced system. 

4. System Performance 
In the previous section, we outline an approximation of steady-state probabilities for the 

proposed ticket queue. In this section, to evaluate the service level, we define several critical 
system performance metrics and derive corresponding closed-form formulations. For 
convenience, we respectively use 0



  and e


  to denote the row zero vector and row 
identity vector of order  . 

 The exact and approximated expected number of (joining) customers in the system are 
respectively denoted by ( )E N  and ( )aE N , as follows: 

 
0

1

0 1
( )

K

i i
E N ipω

ω= = =

= ∑∑∑ t
t

,            (18) 

 1 0
2

( )a a a
j

j
E N

∞

=

= × +∑π v π v ,            (19) 

where T
0 [0,1, 2,..., ,0,1, 2,..., ]K K=v  and T[1,2,..., ,1, 2,..., ]K K=v . 

 The exact and approximated probability that the server is idle are respectively denoted 
by IDP  and a

IDP , as follows: 

 ( ) ( ) 1 1
0 1

10 0 2 2
[1, ,  1, ]K KIDP p p − −= + = ×π 0 0 ,         (20) 

 0 1
0 0 1 [1, ,  1, ]a a

ID K KP q q= + = ×π 0 0 .          (21) 

 The probability of a given customer balking is denoted by bP , as follows: 
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 ( )
12

1
21 12 2 1

1 1 1
K K

i KK

j j Kb
i j j

P φ φ
−−

−

−
= = =

 
+ −= +  

 
∑∏ ∏ I Rπ u π u ,      (22) 

where T[ ,1, ,1]=u 0 0
  

. 

The approximate probability of a given customer balking, a
bP , can be evaluated in terms of 

1
aπ  and the approximation of matrices jφ  and R . 

4.1. Sensitivity analysis 

Sensitivity analysis was used to investigate the influence of each system parameter on 
various metrics of system performance. In the following, we provide numerical evidence 
justifying the use of approximations of the original ticket queue derived using the reduced 
system. These results are helpful for managers seeking to identify variables crucial to 
decision-making. We began with the following initial parameter values: 5K =  , 5λ =  , 

5µ = , and 8φ = . We then adjusted the value of one parameter at a time (from 1 to 9). The 
results are presented in Figures 4 and 5 in the form of snapshots of ( )E N  and bP (solid 
lines) and the corresponding ( )aE N  and a

bP  values (dashed lines). 

 
Figure 4. ( )E N  and ( )aE N  as functions of λ , µ  and φ  from 1(1)9 
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Figure 5. bP  and a

bP  as functions of λ , µ  and φ  from 1(1)9 

Table 1. APE [ ]aE N  and a
bP  (in %) when changing one parameter at a time 

  [ ] [ ] / [ ] 100%aE N E N E N− ×   / 100%a
b b bP P P− ×  

  λ  µ  φ   λ  µ  φ  
1  <0.0001 0.0435 0.4057  0.5083 0.0036 1.6893 
2  0.0383 0.4793 0.9316  2.9124 0.1230 2.4716 
3  0.3818 1.1425 1.1683  4.2586 0.6299 2.6949 
4  0.9823 1.4832 1.2741  3.7428 1.5721 2.7413 
5  1.3872 1.3872 1.3266  2.6756 2.6756 2.7348 
6  1.4755 1.0636 1.3561  1.7819 3.5840 2.7149 
7  1.3635 0.7231 1.3746  1.1700 4.0985 2.6940 
8  1.1711 0.4596 1.3872  0.7739 4.2179 2.6756 
9  0.9671 0.2830 1.3964  0.5196 4.0469 2.6602 

As shown in Figures 4 and 5, ( )E N  and bP  significantly increased with the mean 
arrival rate, particularly when λ  was less than µ . Increasing the service rate was shown 
to reduce queue length and reduce the likelihood of balking. Shortening the vacation period 
did not provide significant benefits. Table 1 lists the calculated absolute percentage errors 
(APE) [ ] [ ] / [ ] 100%aE N E N E N− ×   and / 100%a

b b bP P P− ×   as an indication of 
approximation accuracy. Note that the reduced system provides excellent approximation 
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results, as indicated by an APE of less than 5% and a worst-case APE of 4.3%. Table 1 also 
shows that APEs are concave functions of λ  and µ , due to the low probability of joining 
and balking customers intermixing when the arrival rate or service rate is significantly high. 

To assess the compound effect of impatience and the lengths of the 
arrival/service/vacation periods, we set ( )2 2 8K =  and changed the value of λ  ( µ  and 
φ ) from 1 to 9. The APE results indicating approximation accuracy are listed in Tables 2-4. 
The ( )E N  and bP  curves in Figures 6-11 reveal the following patterns: 

(1) For patient customers and a high K   value, ( )E N   and bP   increased with an 
increase in λ  and decreased with an increase in  or φ . This indicates that the 
effects of system parameters are more pronounced when the ticket queue includes a 
larger number of patient customers. In contrast, for impatient customers and a small 
K  value, bP  will be very high. Under these conditions, the probability of balking 
can be reduced by improving service efficiency or shortening the vacation period. 

(2) Overall, the effects of shortening the vacation period in reducing the likelihood of 
balking are somewhat limited since under a single vacation policy, queue length is 
determined mainly by service efficiency. 

(3) When the mean arrival rate is low or the service rate is high, the low likelihood of 
balking diminishes the effect of K  on system length. Note that the effects of K  
value did not vary with changes inφ . 

(4) Our numerical results reveal that the behavior of a reduced ticket queue is similar to 
that of the original system in terms of the expected number of customers and the 
probability of balking. Note that when the K  value was large, the accuracy of the 
approximations was lower, as indicated by APE values of 0% to 7.17%. 

Taken together, these results indicate that the value of the parameter K  must be estimated 
and monitored carefully, as it has a direct bearing on system performance, approximation 
accuracy, and estimates of customer patience. This indicates that to strengthen service 
capabilities, managers should focus on the training of employees rather than on shortening 
the vacation period. 
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Table 2. APE values of [ ]aE N  and a
bP  (in %) under 1(1)9λ =  and 2(2)8K =  

 [ ] [ ] / [ ] 100%aE N E N E N− ×   / 100%a
b b bP P P− ×  

λ  2K =  4K =  6K =  8K =   2K =  4K =  6K =  8K =  
1 

<0.0001 

0.0008 <0.0001 <0.0001  

<0.0001 

0.7215 0.3163 0.1059 
2 0.0503 0.0213 0.0044  2.5060 2.9231 2.4148 
3 0.3395 0.3515 0.2227  3.0038 5.2145 6.3577 
4 0.7152 1.1485 1.2656  2.4908 4.8740 6.8111 
5 0.9395 1.7632 2.3452  1.7984 3.4435 4.6994 
6 0.9894 1.8952 2.5667  1.2421 2.2056 2.7744 
7 0.9316 1.7151 2.2143  0.8526 1.3841 1.5931 
8 0.8264 1.4232 1.7081  0.5903 0.8753 0.9261 
9 0.7094 1.1285 1.2467  0.4144 0.5629 0.5501 

Table 3. APEs of [ ]aE N  and a
bP  (in %) under 1(1)9µ =  and 2(2)8K =  

  [ ] [ ] / [ ] 100%aE N E N E N− ×   / 100%a
b b bP P P− ×  

µ   2K =  4K =  6K =  8K =   2K =  4K =  6K =  8K =  
1  

<0.0001 

0.0658 0.0244 0.0050  

<0.0001 

0.0055 0.0022 0.0007 
2  0.4252 0.4691 0.3735  0.1181 0.1136 0.0844 
3  0.8300 1.3606 1.5832  0.4974 0.6959 0.7127 
4  1.0027 1.8956 2.5457  1.1162 1.9182 2.3562 
5  0.9395 1.7632 2.3452  1.7984 3.4435 4.6994 
6  0.7574 1.2720 1.4730  2.3679 4.6844 6.5740 
7  0.5574 0.7849 0.7232  2.7335 5.2872 7.1629 
8  0.3887 0.4449 0.3127  2.8889 5.2765 6.6567 
9  0.2630 0.2436 0.1299  2.8747 4.8647 5.6308 

Table 4. APEs of [ ]aE N  and a
bP  (in %) under 1(1)9φ =  and 2(2)8K =  

  [ ] [ ] / [ ] 100%aE N E N E N− ×   / 100%a
b b bP P P− ×  

φ   2K =  4K =  6K =  8K =   2K =  4K =  6K =  8K =  
1  

<0.0001 

0.2113 0.6499 1.2002  

<0.0001 

0.8539 2.6801 4.7851 
2  0.5425 1.3101 1.9269  1.4204 3.5235 5.3535 
3  0.7313 1.5514 2.1284  1.6588 3.6509 5.2037 
4  0.8286 1.6502 2.2132  1.7542 3.6200 5.0261 
5  0.8806 1.6994 2.2633  1.7900 3.5642 4.8959 
6  0.9100 1.7288 2.2984  1.8010 3.5140 4.8061 
7  0.9279 1.7486 2.3247  1.8017 3.4741 4.7438 
8  0.9395 1.7632 2.3452  1.7984 3.4435 4.6994 
9  0.9475 1.7744 2.3614  1.7938 3.4200 4.6670 
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Figure 6. ( )E N  and ( )aE N  as functions of 1(1)9λ =  and ( )2 2 8K =  (bottom to top) 

 

 
Figure 7. bP  and a

bP  as functions of 1(1)9λ =  and ( )2 2 8K =  (bottom to top) 
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Figure 8. ( )E N  and ( )aE N  as functions of 1(1)9µ =  and ( )2 2 8K =  (bottom to top) 

 
Figure 9. bP  and a

bP  against values of 1(1)9µ =  and ( )2 2 8K =  (bottom to top) 
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Figure 10. ( )E N  and ( )aE N  as functions of 1(1)9φ =  and ( )2 2 8K =   

(bottom to top) 

 
Figure 11. bP  and a

bP  as functions of 1(1)9φ =  and ( )2 2 8K =  (bottom to top) 
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4.2. Regression model 

For both the original and reduced systems, the complexity of the matrix analytical 
approach could lead to difficulties in implementation. Note also that matrix manipulations 
and recursive algorithms necessitate the use of a suitably enabled computer. Thus, we 
formulated regression models to determine the correlation between system parameters 
(independent variables) and [ ]E N  (dependent variable). [ ]E N  was calculated under a 
range of parameter values, including ( )2 1 8K = , ( )1 1 8λ = , ( )1 1 8µ = , ( )1 1 8φ = , which 
resulted in a total of 7 8 8 8 3,584× × × =   combinations. As shown in the figures above, 
[ ]E N   is a complex non-linear function of individual parameters and corresponding 

interactions. Thus, we expanded on the original variable set by adding traffic intensity 
/ρ λ µ=  and weighted traffic intensity /Kρ λ µ′ = . For each independent variable ( K , 

λ  , µ  , φ  , ρ   and ρ′  ), we applied reciprocal, natural logarithmic, and exponential 
functions to generate three additional variables. This resulted in a regression model with 

( )6 1 3 24× + =   independent variables. We derived the regression model via backward 
stepwise regression, as follows: 

[ ]

( ) ( ) ( )

1

1 1 1 1

0.0857 0.2426 0.0458 0.8275 0.0429 1.0769

  1.8989 0.4319 1.1793 0.6781
   +2.4001ln 1.324ln 0.0575ln .

E N K

K

µ ρ ρ ρ

λ µ φ
λ µ φ

−

− − − −

′ ′≈ − + − − + +

− + + +

− −

  (23) 

 
Figure 12. Estimation error as a function of parameter K  

The resulting model achieved a multiple R-squared 2 0.9485R =   and an adjusted R-
squared 2 0.9483R =  , indicating that Equation (23) may produce useful predictions, 
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denoted by [ ]rE N . As shown in Figure 12, the estimation error [ ] [ ]rE N E N−  varied 
between -0.8829 and 1.1651 as a function of K . Estimation accuracy dropped off when K  
was extremely small or extremely large; however, under moderate conditions, the model 
provides meaningful guidance for managers in evaluating [ ]E N   without the need for 
troublesome analysis. 

5. Optimization Analysis 
The earlier analysis examines the steady-state probabilities and the system performance 

measurement. This section explores the issue of operating cost optimization. First, the cost 
elements per unit time are listed below 

 hC : the holding cost per customer; 
 sC : the service cost at a specific service rate; 
 vC : the vacation cost at a specific vacation rate; 
 bC : the cost incurred when a balking customer refuses join to the system. 

Based on these cost elements, a function expressing the total operating cost per unit time 
can be formulated as: 

( ) [ ], h s v b bTC C E N C C C Pµ φ µ φ λ= + + + .    (24) 

In addition to the purpose of cost minimization, the expected number of customers in the 
system [ ]E N  and the balking probability bP  are taken into account as the second and the 
third objective functions. For the developed triple-objective optimization problem, our goal 
is to establish the Pareto-optimal solutions formed by non-dominated solutions. A non-
dominated solution is one in which no one objective function can be improved without a 
simultaneous detriment to at least one of the other objectives (Nayak, 2020). The 
mathematical model can be expressed as 

[ ]
, 

min  , , [ ]
L U L U

bTC P E N
µ µ µ φ φ φ≤ ≤ ≤ ≤

,      (25) 

where [ ],L Uµ µ  and [ ],L Uφ φ  indicate the search intervals. Since the decision variables, 
service and vacation rates, are both continuous variables, we apply the nondominated 
sorting genetic algorithm II (NSGA-II) for this task. NSGA-II is a popular heuristic 
algorithm introduced by Deb et al. (2002), which is an enhanced genetic algorithm 
specifically for multi-objective optimization problems. It is designed based on a fast 
nondominated sorting procedure, elitist-preserving approach, and crowding distance 
calculation. In this investigation, the parameters in the NSGA-II algorithm are population 
size 200, number of generations 50, mutation probability 0.2, and crossover rate 0.7. 
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5.1. Numerical results 
Given the cost elements 100hC =  , 300sC =  , 200vC =   and 500bC =  , the non-

dominated solutions are obtained by NSGA-II algorithm with the search intervals 
[ ]3,10µ∈   and [ ]2,5φ ∈  . The Pareto frontiers for 3K =   and 6K =   with different 

arrival rates are displayed as a function of [ ]E N  and bP  in Figures 13-14. For practical 
purposes, partial non-dominated solutions expressing the optimal service rate and vacation 
rate are tabulated in Tables 5 and 6. 

  
(a) (b) 

Figure 13. Pareto-optimal frontiers at 3K =  and different arrival rates 
(a)TC  versus bP ; (b)TC  versus [ ]E N  

  
(a) (b) 

Figure 14. Pareto-optimal frontier at 6K =  and different arrival rates 
(a)TC  versus bP ; (b)TC  versus [ ]E N  

 



© Wu, Shu 

52 

In the numerical results, it can be observed that 

(1) The expected cost is a decreasing, but not linear, function of the expected number of 
customers and the balking probability. To reduce the balking probability, cost will 
increase significantly, particularly, when the required balking probability is very low. 

(2) When the mean arrival rate rises and leads to a higher traffic intensity, the expected 
cost also becomes larger since the system loading is heavier. Moreover, the expected 
number of customers and the balking probability both increase. 

(3) When the customers are more patient with a higher value of K  , the balking 
probability decreases and the expected cost notably decreases but the expected 
number of customers increases. Enhancing the service rate is more beneficial than 
reducing the vacation period, particularly, in the improvement of the balking 
probability. 

Table 5. Non-dominated solutions with different arrival rates and 3K = . 

  2λ =       4λ =    
µ  φ  [ ]E N  bP  TC   µ  φ  [ ]E N  bP  TC  

3.001 2.000 1.224 0.276 1698.4  3.000 2.000 1.727 0.564 2600.5 
4.032 2.927 0.924 0.156 2043.7  4.033 2.477 1.570 0.457 2776.5 
5.051 3.367 0.753 0.102 2366.2  5.056 3.676 1.344 0.337 3059.5 
6.149 4.650 0.568 0.056 2887.5  6.034 4.320 1.195 0.264 3321.9 
7.019 4.986 0.494 0.042 3193.8  7.013 4.995 1.059 0.206 3621.2 
8.042 4.905 0.446 0.034 3471.6  8.005 4.896 0.990 0.179 3837.1 
9.007 4.930 0.408 0.028 3757.0  9.074 5.000 0.916 0.152 4118.4 
9.999 5.000 0.375 0.024 4061.0  10.00 5.000 0.869 0.137 4360.9 

  6λ =       8λ =    
µ  φ  [ ]E N  bP  TC   µ  φ  [ ]E N  bP  TC  

3.000 2.001 1.906 0.696 3577.9  3.000 2.000 1.999 0.767 4567.7 
4.032 2.984 1.756 0.592 3759.0  4.009 3.082 1.872 0.683 4738.3 
5.025 3.384 1.661 0.520 3911.8  5.010 3.443 1.807 0.624 4868.8 
6.004 4.052 1.546 0.447 4107.8  6.033 4.193 1.712 0.557 5048.0 
7.062 4.975 1.412 0.372 4369.7  7.002 4.937 1.622 0.497 5238.7 
8.002 4.926 1.354 0.337 4532.6  8.134 4.967 1.566 0.454 5407.9 
9.012 4.998 1.292 0.304 4743.0  9.052 4.990 1.525 0.425 5566.0 
10.00 5.000 1.243 0.279 4960.7  10.00 5.000 1.486 0.399 5745.6 
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Table 6. Non-dominated solutions with different arrival rates and 6K = . 

  2λ =       4λ =    
µ  φ  [ ]E N  bP  TC   µ  φ  [ ]E N  bP  TC  

3.000 2.000 1.875 0.088 1575.2  3.291 2.000 2.967 0.384 2451.4 
4.023 2.327 1.356 0.032 1840.0  4.015 2.000 2.781 0.296 2474.1 
5.055 3.278 0.923 0.009 2273.7  5.009 2.542 2.397 0.182 2614.6 
6.118 4.435 0.656 0.003 2791.0  6.017 3.444 1.954 0.098 2885.0 
7.056 4.992 0.536 0.001 3170.3  7.015 4.137 1.613 0.055 3202.7 
8.163 4.875 0.473 0.001 3472.1  8.081 4.998 1.309 0.029 3612.3 
9.103 4.959 0.426 0.001 3765.9  9.147 4.988 1.167 0.020 3898.7 
10.00 5.000 0.393 0.001 4039.8  10.00 5.000 1.079 0.016 4140.0 

  6λ =       8λ =    
µ  φ  [ ]E N  bP  TC   µ  φ  [ ]E N  bP  TC  

3.891 2.000 3.239 0.520 3450.4  3.898 2.000 3.420 0.638 4464.5 
4.020 2.000 3.225 0.507 3450.7  4.033 2.000 3.413 0.628 4464.9 
5.005 2.067 3.093 0.418 3477.8  5.011 2.453 3.281 0.540 4482.6 
6.033 2.631 2.839 0.311 3553.6  6.049 2.737 3.154 0.458 4508.3 
7.003 3.104 2.598 0.232 3677.3  7.005 3.241 2.992 0.378 4561.6 
8.035 4.224 2.246 0.149 3926.1  8.018 3.714 2.815 0.305 4650.7 
9.022 4.960 1.979 0.101 4200.6  9.004 4.181 2.634 0.244 4777.6 
10.00 5.000 1.826 0.079 4419.2  10.00 5.000 2.408 0.184 4978.2 

6. Conclusions 
This study investigated a ticket queue with balking customers and a single vacation 

policy. The system states are explicitly described by one indicator variable with vectors of 
various orders. We present a state-transition diagram and a list of flow-balance equations in 
matrix form. The steady-state probabilities are solved using the matrix-geometric method 
and recursive technique. Suitable partitioning of the state space makes it possible to 
determine the state-state distribution of system size using matrix-geometric and recursive 
techniques. To simplify the solution process, we developed a reduced stochastic model to 
approximate steady-state results. The resulting probabilities can then be used to derive 
expressions of the expected number of balking customers and customers in the system. 
Sensitivity analysis was used to examine the effects of various parameters on the two system 
performance metrics. The approximation accuracy of the proposed reduced model was 
excellent, as evidenced by the absolute percentage errors. Graphs revealed the importance 
of evaluating customer patience and their balking threshold. It appears that system length is 
affected mainly by service efficiency rather than the vacation rate. We also developed a 
backward step-wise regression model with added variables and feature extractions to make 
it possible for practitioners to estimate system length without tedious matrix manipulations. 
A cost function was formulated based on the system performance metrics. The efficient 
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NSGA-II was applied to solve a triple-objective optimization problem considering the 
expected operating cost, the expected number of customers, and the balking probability. 
Numerical results with graphical illustrations were provided for use by managers. Future 
research could consider reneging, a hybrid vacation policy, and/or cases involving 
unreliable servers. 
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