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Abstract: Consider the batch-arrival GIX/M/c/N model with c servers, general inter-
arrival batch times, finite buffer, and exponential service times. Inter-arrival batch times,
batch sizes, and service times are i.i.d. and independent of each other. In this article we give
a simple efficient method to derive the one-step transition probabilities of the imbedded
Markov chain observed at the system arrival epochs of the corresponding G/M/c model.
The one-step transition probabilities are computed exactly by converting a numerical in-
tegration problem into a finite sum. Another key contribution is generating the transition
probabilities of the batch-arrival model by using a simple and intuitive method to extend
the results of the standard GI/M/c model to batch arrivals with and without a finite buffer,
and in the case of finite buffer with partial and full batch rejection. We give examples to
demonstrate the performance of our method.

Keywords: GI/M/c model, GIX/M/c/N model, transition probabilities, batch arrivals,
general arrival process, multi-server.

1. Introduction
In this article, using the GI/M/c model, we develop a simple efficient algorithm to ac-

curately compute the one-step transition probabilities of the imbedded Markov chain where
the imbedding points are the arrival epochs. Moreover, we use an innovative approach to
extend the results of GI/M/c queueing model to the GIX/M/c/N multi-server batch ar-
rival finite capacity model. We cover the finite and the infinite buffer cases, and for the finite
buffer case we include models with partial and full batch rejection. Specifically, in this arti-
cle we give a remarkably simple algorithm to derive an accurate solution for the stationary
one-step probabilities and give examples to demonstrate the performance of our method. The
GI/M/c model and its variants are important building blocks in a wide range of queueing
applications that include call centers, health-care, computer and communication, transporta-
tion, and manufacturing systems, among others. See Gontijo et al. [9] for list of references
on these and other applications.
* Corresponding author
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The well known multi-server GI/M/c queue is an important basic model in queueing
theory. This queueing model, with and without finite buffer, is studied by several authors.
Takács [21] and [22] is perhaps the first author to study theG/M/cmodel using the imbed-
ded Markov chain approach. He develops a computational recursion that uses generating
functions techniques. This method is described by Gross and Harris [11] and Kleinrock [15]
as ”extremely long” and ”complex”. All textbooks that deal with this model require the nu-
merical integration of at least one transition probability expression of the imbedded Markov
chain. See for example Gross and Harris [11], Kleinrock [15], Medhi [17], Ross [19], and Ti-
jms [23]. Others use approximation methods like Cosmetatos and Godsave [3]. Moreover,
using the supplemental variable approach Hokstad [12] studies the GI/M/c model with
finite waiting room, and provides relations between pre-arrival, post departure, and time-
average probabilities. See also Yao et al. [24] who uses level crossing methods to relate
similar quantities. Zhao [25] expresses the generating function of the stationary distribution
in closed form. Gontijo et al. [9] estimate the inter-arrival times using the kernel method
and evaluate the performance measures using algorithmic methods. Cruz et al. [4] derive
estimates for certain system measures under finite sampling setting. Neuts [18] uses a ma-
trix analytic approach to investigate this and related models. Grassmann and Tavakoli [10]
review multiple numerical approaches and address stability issues. Kim and Chaudhry [14]
study the finite capacity GI/M/c/N model. See also Ferreira and Pacheco [8].

The batch arrival GIX/M/c model is studied by Chaudhry and Kim [2]. They start
with the balance equations for the imbeddedMarkov chain, write the characteristic equation,
solve for the characteristic equation roots using MAPLE, and use these roots to compute
the arrival probabilities. A supplemental variable approach is used by Laxmi and Gupta [16]
to solve for the finite capacity GIX/M/c/N model in order to relate pre-arrival and time-
average probabilities. They then use the imbedded Markov chain approach to obtain the
pre-arrival probabilities, focusing only on inter-arrival distribution functions whose Laplace
transform can be analytically expressed like the Erlang and the hyper-exponential distribu-
tion functions. Matrix analytic methods pioneered by Neuts [18] are also used to study this
model and its variants. The solutions approach uses algorithmic methods that utilize matrix
algebra and vectors. See also Bailey and Neuts [1] who develop algorithmic methods using
a modified geometric form for the study of the batch arrival GIX/M/c model. All these
methods need the one-step transition probabilities stated in Lemma 2.1, where the transition
probabilities in Lemma 2.1 (iii) are approximated using numerical integration methods.

Computing the one-step transition probabilities in the case of a transition from a state
i ≥ c to a state j ≤ c − 1 requires tedious numerical integration. This is the key step in
most approaches in the literature. In this article, the first contribution is a result that converts
this expression into a finite sum. By itself, this result will make most approaches used in the
literature function more efficiently. This and related results facilitate the development of a
simple stable algorithm to efficiently compute the pre-arrival and time average probability
distributions. Another key contribution is extending theG/M/c standardmulti-servermodel
results to the GIX/M/c/N batch arrival model with and without finite capacity. We use a
novel method to transform the transition probabilities of the standard multi-server model to
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the batch arrival model. We note that El-Taha [5] uses a convolution approach to derive
a result similar to Lemma 2.2, however our current simpler direct method uses integration
techniques only. Interestingly, our direct method complements the convolution approach
given by El-Taha [5].

The rest of the article is organized as follows. In Section 2 we focus on the standard
GI/M/cmodel and determine the transition probabilities efficiently. In Section 3we give an
intuitive method to extend ourGI/M/c results to theGIX/M/c andGIX/M/c/N models.
For the finite buffer model, we cover both the partial and full batch rejection. In Section 4
we give several examples. The examples focus on the GI/M/c model. Moreover, we give
numerical results for large buffer size problems for ρ < 1 and when ρ ≥ 1. In the Appendix
we describe in detail the algorithm to compute the stationary transition probabilities and the
stationary distribution function for the GI/M/c and its variants.

2. The GI/M/cModel
In this section we focus on the GI/M/c model and observe the system at pre-arrival

instants to determine the one-step transition probabilities. The GI/M/c model can be de-
scribed as follows: We have i.i.d. inter-arrival times Ai, i ≥ 1 and i.i.d. exponential service
times Bi, i ≥ 1 with common distribution functions A(t) and B(t) respectively. The first
moments of the inter-arrival and service times are given by E(A) = 1/λ and E(B) = 1/µ
respectively. Note that for this model µn = min(n, c)µ is the state dependent service rate
that shall be needed later. The system state at pre-arrival epochs is described by the Markov
chain {Xn, n = 0, 1, · · · } with transition probabilities given by several standard textbooks
in queueing theory. Because these transition probabilities play an important role in our anal-
ysis and for ease of access we reproduce them in the lemma below (see for example Gross
and Harris [11]).

Lemma 2.1. (i) for j ≤ i+ 1 ≤ c, the transition probabilities of p(i, j) are given by

p(i, j) =

∫ ∞

0

(
i+ 1

i− j + 1

)
e−µtj(1− e−µt)i−j+1dA(t) ;

(ii) For c ≤ j ≤ i+ 1, the transition probabilities of p(i, j) are given by

p(i, j) =

∫ ∞

0

e−cµt(cµt)i−j+1

(i− j + 1)!
dA(t);

(iii) for j + 1 ≤ c ≤ i

p(i, j) =

(
c

c− j

)
(cµ)i−c+1

(i− c)!

∫ ∞

0

∫ t

0

vi−ce−µ(t−v)j−cµv(1− e−µ(t−v))c−jdv dA(t) ;

and p(i, j) = 0, otherwise.

In the next subsection we provide our first key result. Specifically, we use direct inte-
gration to show that the one-step transition probability in Lemma 2.1 (iii) can be written as
a finite sum. This result complements a convolution method used by El-Taha [5].
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2.1. The One-Step Transition Probabilities

We start by defining the Markov chain imbedded at the pre-arrival instants, then de-
scribing our method for computing the transition probabilities. Let Xn be the number of
customers in the system at pre-arrival time instants, and Dn be the number of customers
served during the nth inter-arrival time. Then, Xn+1 and Xn are related by

Xn+1 =

{
Xn + 1−Dn Dn ≤ Xn + 1, Xn ≥ 0

0 otherwise .

It is straightforward to see that {Xn, n ≥ 1} is a Markov chain with one-step transition
probabilities defined as p(i, j) = P{Xn = j|Xn−1 = i}, i = 0, . . . , ; j = 0, . . . , and
given by Lemma 2.1. Let the Laplace-Stieltjes transform (LST) of the inter-arrival times
distribution function A(t) be given by A∗(s) =

∫∞
0

e−stdA(t). Moreover, let dnA∗(s)
dsn

be
the nth derivative of A∗(s) and denote A∗

n(s) = (−1)n dnA∗(s)
dsn

. It can be easily verified
that A∗

n(s) =
∫∞
0

tne−stdA(t) for all n ≥ 0, where A∗
0(s) = A∗(s). Now we present our

fundamental result.

Lemma 2.2. For j > 0, j + 1 ≤ c ≤ i, the one-step transition probabilities are given by

p(i, j) =

c−j∑
k=1

(−1)c−j−k(c− 1)!

(k − 1)!(c− j − k)!j!

( c
k

)i−c+2
[
A∗((c− k)µ)−

i−c+1∑
r=0

(kµ)rA∗
r(cµ)

r!

]
.

(1)

Remark. The difficulty in applying Lemma 2.1 is in evaluating the double integration in part
(iii) which requires tedious numerical integration. We overcome this difficulty by converting
this double integration problem into a finite sum as shown in Lemma 2.2. Furthermore, in
Theorem 2.3 we express the transition probabilities in a more computationally suitable form
by using the derivatives of the LST of the inter-arrival times distribution function.

Proof. To prove (1) we work with a modified version of Lemma 2.1 (iii). Define ν as the
time required for i − c + 2 service completions, and c − j − 1 service completions for the
remaining t− ν time. This leads to the equivalent equation

p(i, j) =

∫ ∞

0

∫ t

0

(
c− 1

c− j − 1

)
e−µ(t−ν)j(1− e−µ(t−ν))c−j−1 (cµ)

i−c+2νi−c+1e−cµν

(i− c+ 1)!
dν dA(t)

=

(
c− 1

c− j − 1

)
(cµ)i−c+2

(i− c+ 1)!

∫ ∞

0

e−µjt

∫ t

0

e−µ(c−j)ννi−c+1(1− e−µ(t−ν))c−j−1 dν dA(t) .

Note that

(1− e−µ(t−ν))c−j−1 =

c−j−1∑
k=0

(
c− j − 1

k

)
(−1)ke−kµ(t−ν) ,
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which leads to

p(i, j) =(
c− 1

c− j − 1

)
(cµ)i−c+2

(i− c+ 1)!

c−j−1∑
k=0

(
c− j − 1

k

)
(−1)k

∫ ∞

0

e−µ(j+k)t

∫ t

0

νi−c+1e−µ(c−j−k)ν dν dA(t) .

(2)

Let K = (µ(c−j−k))i−c+2

(i−c+1)!
. Now, noting that Kνi−c+1e−νµ(c−j−k)dν is a gamma density func-

tion function, we obtain ( e.g., Tijms[23], page 442)∫ t

0

νi−c+1e−νµ(c−j−k)dν =
(i− c+ 1)!

(µ(c− j − k))i−c+2

[
1−

i−c+1∑
r=0

(µ(c− j − k))rtre−tµ(c−j−k)

r!

]
.

Substituting into (2), we have

p(i, j) =

(
c− 1

c− j − 1

)
(cµ)i−c+2

(i− c+ 1)!

c−j−1∑
k=0

(
c− j − 1

k

)
(−1)k

∫ ∞

0

e−µ(j+k)t (i− c+ 1)!

(µ(c− j − k))i−c+2

×
[
1−

i−c+1∑
r=0

(µ(c− j − k))rtre−tµ(c−j−k)

r!

]
dA(t)

=

(
c− 1

c− j − 1

)
(cµ)i−c+2

(i− c+ 1)!

c−j−1∑
k=0

(
c− j − 1

k

)
(−1)k

(i− c+ 1)!

(µ(c− j − k))i−c+2

×
[ ∫ ∞

0

e−µ(j+k)t dA(t)−
i−c+1∑
r=0

(µ(c− j − k))r

r!

∫ ∞

0

tre−cµt dA(t)

]
.

Using,
A∗(s) =

∫ ∞

0

e−stdA(t) and A∗
n(s) =

∫ ∞

0

tne−stdA(t);

we have

p(i, j) =

(
c− 1

c− j − 1

)
(cµ)i−c+2

(i− c+ 1)!

c−j−1∑
k=0

(
c− j − 1

k

)
(−1)k

(i− c+ 1)!

(µ(c− j − k))i−c+2

×
[
A∗(µ(j + k))−

i−c+1∑
r=0

(µ(c− j − k))r

r!
A∗

r(cµ)

]

=

(
c− 1

c− j − 1

) c−j−1∑
k=0

(
c− j − 1

k

)
(−1)k

(
c

c− j − k

)i−c+2

×
[
A∗(µ(j + k))−

i−c+1∑
r=0

(µ(c− j − k))r

r!
A∗

r(cµ)

]
.
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By a change of variable where c− j − k is replaced by k, we obtain

p(i, j) =

(
c− 1

c− j − 1

) c−j∑
k=1

(
c− j − 1

c− j − k

)
(−1)c−j−k

( c
k

)i−c+2

×
[
A∗(µ(c− k))−

i−c+1∑
r=0

(kµ)r

r!
A∗

r(cµ)

]
.

Expanding the combinations and simplifying leads to

p(i, j) =
(c− 1)!

(c− j − 1)!(c− 1− (c− j − 1))!

c−j∑
k=1

(c− j − 1)!

(c− j − k)!(c− j − 1− (c− j − k))!

× (−1)c−j−k
( c
k

)i−c+2
[
A∗(µ(c− k))−

i−c+1∑
r=0

(kµ)r

r!
A∗

r(cµ)

]
.

Rearrange to obtain

p(i, j) =

c−j∑
k=1

(−1)c−j−k(c− 1)!

(k − 1)!(c− j − k)!j!

( c
k

)i−c+2
[
A∗((c− k)µ)−

i−c+1∑
r=0

(kµ)rA∗
r(cµ)

r!

]
.

which is the desired result.
Using Lemma 2.2 and Lemma 2.1 we obtain the main computationally useful result.

Theorem 2.3. (i) For j ≤ i+ 1 ≤ c, the transition probabilities p(i, j) are given by

p(i, j) =

(
i+ 1

i− j + 1

) i−j+1∑
r=0

(−1)r
(
i− j + 1

r

)
A∗((j + r)µ)) .

(ii) For c ≤ j ≤ i+ 1, the transition probabilities p(i, j) are given by

p(i, j) =
(cµ)i−j+1A∗

i−j+1(cµ)

(i− j + 1)!
.

(iii) for j > 0, j + 1 ≤ c ≤ i the transition probabilities p(i, j) are given by

p(i, j) =

c−j∑
k=1

(−1)c−j−k(c− k)Ca
k,c−j

j

( c
k

)i−c+2
[
A∗((c− k)µ)−

i−c+1∑
r=0

(kµ)rA∗
r(cµ)

r!

]
;

(3)
where Ca

k,c−j =
∏k−1

m=1
c−m
k−m

×
∏c−j

m=k+1
c−m
m−k

,
∏

over empty sets is 1; and p(i, j) = 0,
otherwise.
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Note that Ca
k,c−j is always positive, and can be written as

Ca
k,c−j =

(c− 1)!(c− k − 1)!

(c− k)!(k − 1)!(j − 1)!(c− j − k)!
. (4)

Similar results are given by El-Taha [5] using a convolution approach. Our approach here is
more direct and intuitive. We note that Lemma 2.2 allows for direct evaluation of p(i, j) for
j = 0 in region 3, while Theorem 2.3(iii) does not. However we can always compute p(i, 0)
as the complement of the remaining p(i, j) values for j ≥ 1.

Figure 1. Transition Matrix Regions for c = 5

Referring to Figure 1, region 1 is where transition probabilities p(i, j) are given by
Lemma 2.1 (i); region 2 is where p(i, j) are similar to the GI/M/1 model with service
rate cµ; region 3 is where p(i, j) are given by the direct method; and region 4 is where p(i, j)
are 0′s.

Computing the one-step transition probabilities p(i, j) requires the evaluation of the
derivatives of the LST of the inter-arrival time distribution functions. This can be eas-
ily done exactly for all Phase Type (PH-Type) distribution functions. Because PH-Type
distributions are dense in the set of all continuous distribution functions with support on
[0,∞), our approach works at least approximately for any continuous non-negative distribu-
tion function. Now, we introduce PH-Type distribution functions and give their properties,
see Neuts [18] Ch. 2, including a formula for the derivatives of their LST .

PH-Type distribution functions are modeled as the time until absorption in a Markov
process (MP ) with a single absorption state. Consider a PH-Type distribution function
defined on aMP with states {1, · · · , k+1}, k+1 being the absorption state, and a transition
rate matrix

Q =

(
T T 0

0 0

)
,

7



© El-Taha, Michaud

where T is a k×k matrix with Tij ≥ 0, i ̸= j, and Tii < 0, i = 1, . . . , k; 1 is a vector of ones;
T 0 is chosen such that T1+T 0 = 0 i.e., the row of elements ofQ add up to 0; and (α, 0) with
α1 = 1, is the initial distribution of the MP. Let the random variable X be the time until
absorption, then the distribution function ofX is said to be a PH-Type distribution function
with representation (α, T ). Now let the distribution function of X be the inter-arrival time
distribution function of the GI/M/c model, then the distribution function and its LST are
given by

A(t) = 1−α exp(Tt)1, t ≥ 0;

A∗(s) = α(sI − T )−1T 0 .

Moreover,
A∗

n(s) = n!α(sI − T )−(n+1)T 0 . (5)

This is explored further in Section 4 where (5) is used to give closed form expressions for
the derivatives of several cases ofPH-Type distribution functions including the exponential,
the Erlang, and the hyper-exponential.

Remarks on Complexity and Stability. We note that the method given by Theorem 2.3 (iii)
involves two finite sums and computations of the order of O((i− c)(c− j)). In contrast the
method using Lemma 2.1 (iii) would involve numerically approximating a double infinite
integration. El-Taha [5] also discusses numerical stability issues that arise when calculations
involve alternating between positive and negative terms. Specifically, the idea is to collect
all positive (negative) terms together and use one subtraction at the end as we discuss in
Subsection 4.3.

2.2. Arrival-Time and Time-Average Probability Distributions.

The contribution of Lemma 2.2 and Theorem 2.3 is in computing the transition probabil-
ities efficiently using a finite sum as compared to approximations and numerical integration
that would be needed in part (iii) of Theorem 2.3. Now one can use one of several methods
in the literature (see references) to compute the system size stationary distribution function.
We briefly discuss one efficient method to compute the arrival-time probabilities. Then we
relate the time-average probabilities to the pre-arrival ones.

Arrival-Time Probabilities.
Let {π(i), i = 0, . . . , } be the stationary distribution function of the imbedded Markov

chain {Xn, n = 0, 1 . . .}, then solve the system of equations π = πP ,
∑

π(i) = 1 to obtain
the arrival time probabilities. A more efficient approach is to use the concept that proba-
bility flow across cuts balance to efficiently solve the pre-arrival time probabilities for the
GI/M/c/N model using Lemma 1.4 of Kelly [13]. For j = 1, 2, · · · , N

π(j)p(j, j + 1) =
N∑

k=j+1

π(k)

j∑
i=0

p(k, i) ,

8
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which implies

π(j) =
N∑

k=j+1

π(k)a(k, j)/p(j, j + 1) , (6)

where a(k, j) =
∑j

i=0 p(k, i).
One can compute the {π(.)} recursively using (6) starting with π(N). For the infinite

capacity model we can iterate onN until we achieve a desired level of accuracy. Instead, we
pre-determineN so that a prescribed level of precision is achieved. It is well-known (Gross
and Harris [11]) that π(n) = Cσn for n ≥ cwhereC is a constant and |σ| < 1 is the solution
of the equation

σ =

∫ ∞

0

e−cµ(1−σ)tdA(t) ≡ A∗(cµ(1− σ)) . (7)

Moreover, C is given by Gross and Harris [11] as C =
1−

∑c−1
j=0 π(j)

σc(1−σ)−1 . The following lemma
serves to guide our selection of N .

Lemma 2.4. For all n such that

n > c+
ln(ϵ)− 2 ln(1− σ)

ln(σ)
;

we have |π(n+ 1)− π(n)| < ϵ, where ϵ is the tolerance level.

Time-Average Stationary Distribution.
One is typically interested in the system performance measures like the mean number of

customers in the system and the queue L and Lq, and the mean delay in the system and the
queueW andWq respectively. To do this we need the time-average probability distribution
function which is of interest in its own right. Let {X(t), t ≥ 0} be a stochastic process so
thatX(t) is the number of customers in the system at time t, then the time-average stationary
distribution is defined as

p(n) = lim
t→ ∞

P{X(t) = n}, n = 0, 1, . . . , .

We evaluate the stationary distribution function {p(.)} by relating those probabilities to the
pre-arrival probabilities π(.) as shown in the following result.

Lemma 2.5. Consider the GI/M/c/N queueing model and let ρ = λ/cµ. Then the system
size probabilities, p(i), i = 0, . . . N , are given by

p(n) =

 (1− ρ) + ρπ(N)− ρ
∑c−2

k=0
c−k−1
k+1

π(k), n = 0 ;

cρπ(n− 1)/n , 1 ≤ n ≤ c ;
ρπ(n− 1) , c < n ≤ N .

A proof of Lemma 2.5 is given by El-Taha [5]. For more details on the computation of
stationary probabilities the reader is referred to El-Taha and Michaud [6].
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3. Extension to GIX/M/c/N Model
In this section we discuss an intuitive method to extend our GI/M/c results to the

GIX/M/c and GIX/M/c/N models. We note that the models have been discussed by
several articles, notably by Laxmi and Gupta [16] and Chaudry and Kim [2] among oth-
ers mentioned in the introduction. Our approach is different in the sense that we generate
the one-step transition probabilities of the batch arrival models directly from the standard
GI/M/c model and the batch size distribution function.

The section builds on Theorem 2.3 by devising a remarkably intuitive and new approach
to express the transition probabilities for the batch arrival GI/M/c models in terms of the
transition probabilities of the GI/M/c model given by Theorem 2.3. These results are ex-
pressed in Lemmas 3.1, 3.3, and 3.5. Also the results in Lemmas 3.2, 3.4, and 3.6, that follow
frommore general results in El-Taha and Stidham [7] allow us to compute time-average from
arrival-time probabilities.

LetX be a random variable that represents the batch size, and let b(k) be the pmf ofX
with support [1,∞) such that b(k) = P (X = k). We note here that typical random variables
that are used to model batch sizes have a support that starts at 0. Let g(k) be a p.m.f. with
support [0,∞), that is, with g(k) we allow a batch of size 0 to occur like the Poisson and the
geometric random variables. In this situation, we think of b(k) as b(k) = g(k)/(1 − g(0)).
Also note that in these models A(t) is the distribution function of batch inter-arrival times
and 1/λ is the mean time between batch arrivals, so that the overall arrival rate λA = λE[X].
Also ρ = λE[X]/cµ. We require ρ < 1 for the infinite buffer models.

Moreover let p∗(i, j) be the one-step transition probabilities just before arrival of the
imbedded Markov chain of the GIX/M/c and GIX/M/c/N models. Recall that p(i, j)
are the corresponding one-step transition probabilities associated with the GI/M/c and
GI/M/c/N models. Now we consider three cases.

Case 1. GIX/M/c
We consider the GI/M/c with batch arrivals and obtain the one-step transition proba-

bilities.

Lemma 3.1. Consider the GIX/M/c queueing model. Then, for all i, j

p∗(i, j) =
∞∑
k=1

p(i+ k − 1, j)b(k) .

Let {π(i)} and {p(i)} be the system size pre-arrival and time-average stationary proba-
bility distribution functions respectively. Now replace p(i, j)with p∗(i, j) to compute {π(i)}
of the resulting Markov chain. In order to relate the time-average to pre-arrival probabilities
we use the following result.

10
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Lemma 3.2. Consider the GIX/M/c queueing model with batch arrivals. Then the system
size probabilities, {p(i), i = 0, . . .}, are given by

p(n) =

 λ
∑n−1

k=0 π(k)B
c(n− k)/min(n, c)µ, n = 1, · · · ;

1−
∑∞

k=1 p(k) , n = 0 ;

where Bc(n− k) =
∑∞

n−k b(i).

Proof. The proof follows from El-Taha and Stidham [7], equation (4.34), page 107 ; see also
Stidham and El-Taha [20].
Case 2: GIX/M/c/N with partial rejection.

In this case a batch that brings the system state aboveN is partially accepted in the sense
that the system will accept a part of the batch for the state to reachN and the rest of the batch
is rejected. Then for all i, j the one-step transition probabilities are given by this result.

Lemma 3.3. Consider the GIX/M/c/N queueing model with partial rejection. Then, for
all i, j

p∗(i, j) =
N−i−1∑
k=1

p(i+ k − 1, j)b(k) + p(N − 1, j)Bc(N − i) ;

where Bc(N − i) =
∑∞

k=N−i b(k).

Proof. It is clear that

p∗(i, j) =
N−i−1∑
k=1

p(i+ k − 1, j)b(k) + p(N − 1, j)

(
∞∑

k=N−i

b(k)

)

=
N−i−1∑
k=1

p(i+ k − 1, j)b(k) + p(N − 1, j)Bc(N − i) .

In order to relate the time-average to pre-arrival probabilities we use the following result.

Lemma 3.4. Consider the GIX/M/c/N queueing model with partial rejection. Then the
system size probabilities, {p(i), i = 0, . . . N}, are given by

p(n) =


λ
∑n−1

k=0 π(k)B
c(n− k)/min(n, c)µ, n = 1, · · ·N ;

1−
∑N

k=1 p(k) , n = 0 ;

where Bc(n− k) =
∑∞

n−k b(i).

Proof. The proof is similar to Lemma 3.2.
Case 3: GIX/M/c/N with full rejection.

In this case a batch that brings the system state above N is fully rejected.

11
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Lemma 3.5. Consider the GIX/M/c/N with full rejection. Then, for all i, j

p∗(i, j) =
N−i∑
k=1

p(i+ k − 1, j)b(k) + p(i, j)Bc(N − i+ 1) ;

where Bc(N − i+ 1) =
∑∞

k=N−i+1 b(k).

Proof. It is clear that

p∗(i, j) =
N−i∑
k=1

p(i+ k − 1, j)b(k) + p(i, j)

(
∞∑

k=N−i+1

b(k)

)

=
N−i∑
k=1

p(i+ k − 1, j)b(k) + p(i, j)Bc(N − i+ 1) .

We use the following results to relate the time-average probabilities to pre-arrival prob-
abilities.

Lemma 3.6. Consider the GIX/M/c/N with full rejection. Then the system size probabil-
ities, {p(i), i = 0, . . . N}, are given by

p(n) =


λ
∑n−1

k=1 π(k)[B
c(n− k)− Bc(N − k)]/min(n, c)µ, n = 1, · · ·N ;

1−
∑N

k=1 p(k) , n = 0 ;

where Bc(n− k) =
∑∞

n−k b(i).

Proof. The proof is similar to Lemma 3.4, except here batches that result in more than N
customers in the system are totally rejected.

Yao et.al.[24] and Laximi and Gupta [16] give similar relations to relate time-average
and pre-arrival probabilities as in Lemma 3.4 and Lemma 3.6. Replacing p(i, j) with
p∗(i, j), the arrival-time probabilities can be computed using π = πP ∗,

∑
i∈S π(i) = 1

where P ∗ = [p∗(i, j)] is the one-step transition matrix and S is the state space. One can also
use one of the methods discussed in the literature in the introduction to compute the arrival-
time distribution. The time-average probabilities are then computed using the corresponding
Lemma 3.2, Lemma 3.4, or Lemma 3.6. In Appendix A, the computations for the batch
arrival models are given by an appropriate adaptation of the algorithm for the GI/M/c/N
model.

4. Examples and Numerical Results
In this section we give the transition probabilities of small finite buffer examples of

the GI/M/c/N model, and provide numerical results that compare our method to other
approaches in the literature. We also discuss numerical results for large scale problems. We
note that in the infinite buffer case we truncate the system size by using |π(n+1)−π(n)| < ϵ.
Moreover, we include numerical results for the finite buffer model when ρ ≥ 1.

12
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4.1. Special Examples

Our focus here is on inter-arrival time distributions whose LST have closed form mul-
tiple derivatives. We choose four distribution functions with coefficients of variation that
vary from 0 to infinity. Specifically, we select the deterministic, Erlang, exponential, and the
hyper-exponential distribution functions. Let a(t) be the p.d.f. of the inter-arrival times. Re-
call that we require that the inter-arrival time distribution function has a mean E[A] = 1/λ.
Here we give explicit forms for the derivatives of the LST of the inter-arrival time distribu-
tion functions.

Deterministic. In this case we assume that a(t) = a w.p. 1, so that A∗
n(s) = ane−sa . Note

that here λ = 1/a.

Exponential. Here a(t) = λe−λt, t ≥ 0, so that A∗
n(s) = n!λ/(s+ λ)n+1 .

Erlang. The density function for a k phase Erlang is a(t) = θ(θt)k−1

(k−1)!
e−θt, θ > 0, t ≥ 0. Note

that hereE[A] = k/θ, so that θ = kλ. Wewould like themean to stay constant, so we replace
θ by kλ, and use density function for a k phase Erlang as a(t) = kλ(kλt)k−1

(k−1)!
e−kλt, λ > 0, t ≥ 0.

Here A∗
n(s) = n!

(
k+n−1
k−1

)
(kλ)k/(s+ kλ)k+n . Note that again E[A] = 1/λ.

Hyper-exponential. Let ai(t) be an exponential p.d.f with parameter λi. Then, the k phase
hyper-exponential is given by a(t) =

∑k
i=1 piai(t); so thatA∗(s) =

∑k
i=1

piλi

s+λi
. We shall use

the two phase hyper-exponential which is amixture of two exponential distribution functions.
The density function can be written as a(t) = pλ1e

−λ1t+(1−p)λ2e
−λ2t, λ1 > 0, λ2 > 0, t ≥

0, (0 ≤ p ≤ 1). Therefore

A∗
n(s) = n!

[
pλ1

(s+ λ1)n+1
+

(1− p)λ2

(s+ λ2)n+1

]
.

Now, we show how to use these transforms to write the one-step transition matrix in
explicit form. We present small-scale, finite-buffer examples for a system with c = 3 servers
and a total capacity of K = 6. Now referring to the regions described in Figure 1 and
using Theorem 2.3, wewrite the one-step transition probabilities in themore computationally
convenient form as follows.
(i) For Region 1, where i ≤ c − 1 and j ≤ i + 1, (i.e.: i = 0, 1, 2 and j = 1, ..., i + 1),

we use

p(i, j) =
(i+ 1)!

j!

i−j+1∑
k=0

(−1)kA∗((j + k)µ)

(i− j − k + 1)!k!
.

(ii) For Region 2, where i = c, c+1, ..., K − 1, j = c, c+1, ..., i+1, i+1 ≤ K (i.e.:
i = 3, 4, 5 and j = 3, 4, 5), we use

p(i, j) =
(cµ)i−j+1

(i− j + 1)!
A∗

i−j+1(cµ) =
(3µ)i−j+1A∗

i−j+1(3µ)

(i− j + 1)!
.

13
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(iii) For Region 3, where 1 ≤ j ≤ c − 1 < i (i.e.: i = 3, 4, 5 and j = 1, 2), we use the
direct result

p(i, j) =

3−j∑
k=1

Ck,3−j(3− k)

j

(
3

k

)i−1
[
A∗((3− k)µ)−

i−2∑
r=0

(kµ)rA∗
r(3µ)

r!

]
;

where

Ck,3−j =
k−1∏
m=1

3−m

k −m

3−j∏
m=k+1

3−m

k −m
, C3−j,3−j =

2−j∏
m=1

3−m

3− j −m
, and

Cv,v =
v−1∏
m=1

3−m

v −m
; so that C1,1 = 1, C1,2 = −1, C2,2 = 2 .

Also, for i ≥ c and j = 0, we simply use p(i, j) = 1 −
∑K

n=1 p(i, n). Moreover, for
Region 4, p(i, j) = 0 where j > i + 1. When i = K, use p(K, j) = p(K − 1, j) for all
j = 0, · · · , K. Note that, if i is the number in the system immediately prior to an arrival,
then the transition probabilities when i = K − 1 must be the same as the probabilities when
i = K, because in the first case, the system becomes full, and in the second case, the system
is already full and the new arrival is lost. Given the Markovian property, the transition
probabilities are unaffected by additional arrivals while the system is full. Therefore the
one-step transition matrix is given by

P =



1−A∗(µ) A∗(µ) 0 0 0 0 0

1− 2A∗(µ) +A∗(2µ) 2A∗(µ)− 2A∗(2µ) A∗(2µ) 0 0 0 0

1− 3A∗(µ) + 3A∗(2µ) 3A∗(µ)− 6A∗(2µ) 3A∗(2µ)− 3A∗(3µ) A∗(3µ) 0 0 0

−A∗(3µ) +3A∗(3µ)

1−
∑4

n=1 p(3, n) p(3, 1) p(3, 2) 3µA∗
1(3µ) A∗(3µ) 0 0

1−
∑5

n=1 p(4, n) p(4, 1) p(4, 2) 9
2
µ2A∗

2(3µ) 3µA∗
1(3µ) A∗(3µ) 0

1−
∑6

n=1 p(5, n) p(5, 1) p(5, 2) 9
2
µ3A∗

3(3µ)
9
2
µ2A∗

2(3µ) 3µA∗
1(3µ) A∗(3µ)

1−
∑6

n=1 p(6, n) p(6, 1) p(6, 2) 9
2
µ3A∗

3(3µ)
9
2
µ2A∗

2(3µ) 3µA∗
1(3µ) A∗(3µ)


where

p(3, 1) =
9

2
A∗(µ)− 18A∗(2µ) +

27

2
A∗(3µ) + 9µA∗

1(3µ) ;

p(3, 2) = 9A∗(2µ)− 9A∗(3µ)− 9µA∗
1(3µ) ;

p(4, 1) =
27

4
A∗(µ)− 54A∗(2µ) +

189

4
A∗(3µ) +

81

2
µA∗

1(3µ) +
27

2
µ2A∗

2(3µ) ;

p(4, 2) = 27A∗(2µ)− 27A∗(3µ)− 27µA∗
1(3µ)−

27

2
µ2A∗

2(3µ) ;

14
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p(5, 1) =
81

8
A∗(µ)− 162A∗(2µ) +

1215

8
A∗(3µ) +

567

4
µA∗

1(3µ) +
243

4
µ2A∗

2(3µ)

+
27

2
µ3A∗

3(3µ) ;

p(5, 2) = 81A∗(2µ)− 81A∗(3µ)− 81µA∗
1(3µ)−

81

2
µ2A∗

2(3µ)−
27

2
µ3A∗

3(3µ) ;

p(6, 1) = p(5, 1) ; and p(6, 2) = p(5, 2) .

Deterministic Arrivals. For deterministic inter-arrivals with probability density function
a(t) = a, and 0 otherwise (i.e. λ−1 = a), thus we have

A∗
n(s) = ane−sa ;

therefore
A∗(µ(j +m)) = e−µ(j+m)a ;

and
A∗

n(cµ) = ane−cµa .

This gives the following: A∗(0) = 1, A∗(µ) = e−aµ, A∗
1(3µ) = ae−3aµ, A∗(2µ) = e−2aµ,

A∗
2(3µ) = a2e−3aµ, A∗(3µ) = e−3aµ, and A∗

3(3µ) = a3e−3aµ. Substitute in the general
arrivals matrix to get the corresponding one-step transition matrix for deterministic inter-
arrival times. Thus our transition matrix is as follows:

P =



1− e−aµ e−aµ 0 0 0 0 0

1− 2e−aµ + e−2aµ 2e−aµ − 2e−2aµ e−2aµ 0 0 0 0

1− 3e−aµ + 3e−2aµ 3e−aµ − 6e−2aµ 3e−2aµ − 3e−3aµ e−3aµ 0 0 0

− e−3aµ + 3e−3aµ

1−
∑4

n=1 p(3, n) p(3, 1) p(3, 2) 3aµe−3aµ e−3aµ 0 0

1−
∑5

n=1 p(4, n) p(4, 1) p(4, 2) 9
2
a2µ2e−3aµ 3aµe−3aµ e−3aµ 0

1−
∑6

n=1 p(5, n) p(5, 1) p(5, 2) 9
2
a3µ3e−3aµ 9

2
a2µ2e−3aµ 3aµe−3aµ e−3aµ

1−
∑6

n=1 p(6, n) p(6, 1) p(6, 2) 9
2
a3µ3e−3aµ 9

2
a2µ2e−3aµ 3aµe−3aµ e−3aµ


where

p(3, 1) =
9

2
e−aµ − 18e−2aµ +

27

2
e−3aµ + 9µae−3aµ ;

p(3, 2) = 9e−2aµ − 9e−3aµ − 9µae−3aµ ;

p(4, 1) =
27

4
e−aµ − 54e−2aµ +

189

4
e−3aµ +

81

2
µae−3aµ +

27

2
µ2a2e−3aµ ;

p(4, 2) = 27e−2aµ − 27e−3aµ − 27µae−3aµ − 27

2
µ2a2e−3aµ ;

p(5, 1) =
81

8
e−aµ − 162e−2aµ +

1215

8
e−3aµ +

567

4
µae−3aµ +

243

4
µ2a2e−3aµ
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+
27

2
µ3a3e−3aµ ;

p(5, 2) = 81e−2aµ − 81e−3aµ − 81µae−3aµ − 81

2
µ2a2e−3aµ − 27

2
µ3a3e−3aµ ;

p(6, 1) = p(5, 1), and p(6, 2) = p(5, 2) .

Similar to the deterministic distribution function, one can easily generate one-step transi-
tion matrices for the other distributions, namely the exponential, the Erlang, and the hyper-
exponential.

4.2. Numerical Results for Small Buffer Size

Here we provide numerical results for the distributions given above, for a system with
c = 3 servers, arrival rate λ = 5, service rate µ = 2, capacity ofN = 6, and utilization factor
ρ = .833. For the hyper-exponential we use p = .8, λ1 = 8, and λ2 = 2, so that the overall
λ = 5. Numerical results are reported in Tables 1-3. In Table 1, we use the exponential dis-
tribution function and compare our method with the traditional method, i.e. theM/M/3/6
model. The results match perfectly. This helps to verify our approach numerically. Table 2
reports the time-average probabilities for the other three distribution functions, and Table 3
reports performance measures.

Table 1. Numerical Results: Finite Buffer Model With Exponential Arrivals
p(n) Exponential-Direct Exponential-Traditional
0 0.067958810 0.067958810
1 0.169897026 0.169897026
2 0.212371283 0.212371283
3 0.176976069 0.176976069
4 0.147480057 0.147480057
5 0.122900048 0.122900048
6 0.102416707 0.102416707

Table 2. Numerical Results: inite Buffer Model With Deterministic, Erlang, or
Hyper-Exponential Arrivals

p(n) Deterministic Erlang Hyper-Exponential
0 0.047234853 0.060394802 0.095667547
1 0.127764093 0.153533580 0.170777140
2 0.254669333 0.228194616 0.182173364
3 0.232414603 0.196990341 0.153721590
4 0.156638062 0.150739248 0.148862427
5 0.107500964 0.117912665 0.131909935
6 0.073778091 0.092234748 0.116887997
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Table 3. Performance Measures, Finite Buffer Models
L W

Exponential - Direct 2.944488506 0.656092538
Exponential - Traditional 2.944488506 0.656092538
Deterministic - Direct 2.941072182 0.635068584

Erlang - Direct 2.946822639 0.649247728
Hyper-exponential - Direct 2.952616004 0.668684379

4.3. Numerical Results for Large Buffer Size

In this subsection we deal with large scale applications and report on computational
methodology and numerical results. We cover theGI/M/cmodel with heavy traffic ρ < 1.
This will result in large buffer sizes determined by Lemma 2.4. The approach forGI/M/c/N
with ρ < 1 work similarly except that N is predetermined. We also give numerical results
for the GI/M/c/N when ρ ≥ 1.

GI/M/c with ρ < 1.
For the four distributions, deterministic, Erlang, exponential, and hyper-exponential, we

recursively compute the stationary distributions {π(.)} and {p(.)} using the direct method
as in Theorem 2.3 and the algorithm in the Appendix. For the large scale examples, reported
in Table 4 and Figures 2 and 3, we use λ = 5.8, µ = .2, c = 30, and ρ = .966. In the
case of the hyper-exponential we use p = .873563218, λ1 = 8, and λ2 = 2 which gives
a coefficient of variation ≈ 1.430035 . For each of the four distribution functions, we use
ϵ = 10−125 in step 3 of the algorithm to recursively solve for σ, and use Lemma 2.4 (step
4 of the algorithm) with ϵ = 10−16 to identify the truncation value for the infinite capacity.
The values for N are 490, 705, 918 and 1349 for the deterministic, Erlang, exponential, and
hyper-exponential respectively.

For large buffer sizeN , numerical stability becomes an issue that needs to be dealt with.
The term (−1)j in Theorem 2.3 (i) and (iii) which causes subtraction in every other step
is one source of numerical instability. To address this issue consider a sum of the form
S(.) =

∑J
k=1(−1)J−khk(.), and rewrite as

S(.) = |
[J/2]∑
u=1

h2u(.)−
[(J+1)/2]∑

u=1

h2u−1(.)| (8)

Note that how this form converts J/2 subtractions into one subtraction at the end. We use
(8) to rewrite (3) as

p(i, j) =

∣∣∣∣∣∣
[(c−j+1)/2]∑

u=1

Ca
2u−1,c−j(c− 2u+ 1)

j
×
(

c

2u− 1

)i−c+2 [
A∗((c− 2u+ 1)µ)

−
i−c+1∑
r=0

((2u− 1)µ)rA∗
r(cµ)

r!

]
−
[(c−j)/2]∑

u=1

Ca
2u,c−j(c− 2u)

j

( c

2u

)i−c+2

17
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×
[
A∗((c− 2u)µ)−

i−c+1∑
r=0

(2uµ)rA∗
r(cµ)

r!

]∣∣∣∣∣ (9)

Additionally, part (i) of Theorem 2.3 can be written in a similar stable form.
We use the Python programming language to compute the stationary probabilities for

large-scale examples. Use of the Decimal package, a fixed-decimal package capable of ar-
bitrarily long mantissas, is notable in addressing the overflow errors associated with large
factorials and the underflow issues created by the LST values with large c and N .

The results for exponential inter-arrivals are compared with traditional methods for com-
puting stationary probabilities usingM/M/c queues such as described inGross&Harris[11]
and Kleinrock[15]. This serves to verify, numerically, our method computations. For deter-
ministic, Erlang, and hyper-exponential inter-arrivals, our results are compared with Takács
method as generated by the QTS software provided by Gross & Harris [11].

As can be seen from the QTS (Takács) results for the Erlang, deterministic, and hyper-
exponential distributions, difficulties with floating-point overflow/underflow exist with this
number of servers, and can persist as low as c = 10. These problems expand with increasing
c, limiting usable results from that software.

With the exception of p(0), which compounds the error present in all other values of
p(n), our method is more numerically stable than Takács as implemented by QTS software
provided by Gross & Harris [11] even when using floating-point levels of precision. Our
use of the Decimal package provides accuracy for substantially higher values of c while also
reducing the error of p(0) below that of floating-point implementations.

Table 4 provides performance measures comparing our direct algorithm and Takács
method. There is a good match between the two methods. Moreover, Figure 2 and Figure 3
provide the cumulative and density distribution functions for the four distributions, however
we truncated the distribution functions in Figures 2 and 3 at 100 and 80 respectively.

Table 4. Performance Measures when ρ < 1

Distribution/Method L W
Deterministic - Direct 39.357 6.786
Deterministic - Takács 39.357 6.786

Erlang - Direct 45.600 7.870
Erlang - Takács 45.637 7.869

Exponential - Direct 52.083 8.980
Exponential - Traditional 52.083 8.980
Hyper-exponential - Direct 65.500 11.300
Hyper-exponential - Takács 65.480 11.290

Our approach in dealing with the batch arrival model is to build on the corresponding
standard G/M/c model as indicated in the adaptation algorithm given in the appendix.
GI/M/c/N with ρ ≥ 1.

In this case we need to make a few adjustments to the algorithm in the appendix. We
do not need to root solve for σ but need to pre-specify N . Also, we initialize π(N) = 1
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Figure 2. Cumulative Distribution Functions for c = 30, ρ = 0.966

Figure 3. Probability Mass Functions for c = 30, ρ = 0.966
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and iterate on π(j), j = N − 1, . . . , 0, then normalize. The adaption algorithm to this
case, in the appendix, specifies the necessary modifications. We note that, for ρ ≥ 1 the
distribution function becomes centered close to N and as ρ → ∞, P (N) → 1. Table 5
reports L andW and P (N) for this case using the four distribution functions used for other
numerical results. For the numerical results reported reported in Table 5, we use N = 100,
λ = 6.8, µ = 1/3, c = 20, resulting in a ρ = 1.13. In the case of the hyper-exponential
we use p = .941176470588, λ1 = 8, and λ2 = 2 which gives a ρ = 1.13 similar to other
distributions.

Table 5. Performance Measures when ρ > 1

Distribution L W P (N)
Deterministic 96.2500 17.4504 0.18888

Erlang 94.3750 16.2058 0.14360
Exponential 92.5019 15.4170 0.11765

Hyper-exponential 89.8611 14.8160 0.10807

5. Concluding Remarks
A great majority of textbooks that deal with the G/M/c model and its extensions in-

troduce the stationary one-step transition probabilities in the form of Lemma 2.1 where the
set of transition probabilities in Lemma 2.1(iii) are approximated using truncation and nu-
merical integration. In this article it is shown that this indefinite integral can be converted
into a finite sum using simple direct integration techniques. Thus we give a computationally
efficient and exact finite sum expression for the transition probabilities. Moreover, we use
a novel method to generate the one-step transition probabilities of the related batch arrival
models in terms of the one-step transition probabilities of the G/M/c model. For the fi-
nite buffer case we include models with partial and full batch rejection. To demonstrate the
applicability of this method, we give examples and numerical results for several cases, in-
cluding when ρ ≥ 1. Numerical experience indicates that one needs to pay special attention
to numerical stability of the algorithms.
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A. Appendix
The direct algorithm presented here is used to compute the stationary probabilities. Our

computational methodology follows Sections 2 and 3, wherein the transition probabilities are
prepared following the examples described in the first part of Section 4. Moreover, |σ| < 1
is determined from A∗(cµ(1 − σ)) = σ. Below we give an algorithm for the multi-server
model, followed by an adaptation to the finite buffer batch-arrival multi-server cases.

Algorithm for the GI/M/cModel
Initialization. Let ϵ be the maximum allowable error, c be the number of servers each

with mean rate µ, and λ be the mean arrival rate. We also input the LST of the inter-arrival
times distribution and number of phases and/or weights if applicable. Note that for large
scale examples we determine N using ϵ.

1. Compute ρ = λ/cµ and check that ρ < 1 (i.e.: a long-run solution exists).
2. For each specified inter-arrival distribution, compute A∗(s) for s = kµ where k =

1, 2, ..., c and A∗
n(cµ) for n = 1, 2, ..., N − c+ 1

Deterministic: A∗(s) = e−s/λ, A∗
n(cµ) = λ−ne−cµ/λ

Exponential: A∗(s) = λ
s+λ

, A∗
n(cµ) =

n!λ
(cµ+λ)n+1

Erlang (two-phase): A∗(s) = 4λ2

(s+2λ)2
, A∗

n(cµ) = n!(n+ 1) 4λ2

(cµ+2λ)n+2
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Hyper-exponential (two phase): A∗
n(s) = n!

[
pλ1

(s+λ1)n+1 +
(1−p)λ2

(s+λ2)n+1

]
, and

A∗
n(cµ) = n!

[
pλ1

(cµ+λ1)n+1 +
(1−p)λ2

(cµ+λ2)n+1

]
.

3. Root-solve by iterating over the following until |σn+1 − σn| < ϵ

σn+1 = A∗[cµ(1− σn)]

4. For a given ϵ, determine N (for large examples) using

N = min
{
n ∈ N

∣∣ n ≥ c+
ln(ϵ)− 2 ln(1− σ)

ln(σ)

}
5. Define p(i, j) = 0 for all i = 0, 1, ..., N − 2, j = i+ 2, i+ 3, ..., N .
6. Compute p(i, j) for i = 0, 1, 2, ..., c− 1, j = 1, 2, ..., i+1 using the computationally

friendly form:

p(i, j) =
(i+ 1)!

j!

i−j+1∑
k=0

(−1)kA∗((j + k)µ)

(i− j − k + 1)!k!
.

7. Compute p(i, j) for i = c, c+ 1, ..., N , j = c, c+ 1, ..., i+ 1, i+ 1 ≤ N using

p(i, j) =
(cµ)i−j+1A∗

i−j+1(cµ)

(i− j + 1)!

8. Compute p(i, j) for i = c, c + 1, ..., N , j = 1, 2, ..., c − 1 using the computationally
friendly form:

p(i, j) =
c!

j!

c−j∑
k=1

(−1)(c−j−k)

k!(c− j − k)!

( c
k

)i−c+1
[
A∗((c− k)µ)−

i−c+1∑
r=0

(kµ)rA∗
r(cµ)

r!

]
9. Compute p(i, j) for i = c, c+ 1, ..., N , j = 0 using

p(i, j) = 1−
N∑

n=1

pi,n

10. Define a(k, j) = 0 for k = 0, 1, ..., N , j = k, k + 1, ..., N
11. Compute a(k, j) for k = j + 1, j + 2, ..., N , j = 0, 1, ..., c− 1 using

a(k, j) =

j∑
i=0

p(k, i)

12. Compute π′(j) = σj for j = c, c+ 1, ..., N
13. Compute π′(j) for j = c− 1, c− 2, ..., 0 recursively using

π′(j) =

∑N
k=j+1 π

′(k)a(k, j)

p(j, j + 1)
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14. Compute π(j) for j = 0, 1, ..., N by normalizing π′
j using

π(j) =
π′(j)

Φ

where

Φ =
N∑
k=0

π′(k) =
c−1∑
k=0

π′(k) +
N∑
k=c

σk =
c−1∑
k=0

π′(k) +
σc(1− σN−c+1)

(1− σ)

15. Compute p(0) using

p(0) = (1− ρ) + ρπ(N)− ρ

c−2∑
k=0

c− k − 1

k + 1
π(k)

16. Compute p(n) for n = 1, 2, ..., c− 1 using

p(n) =
cρπ(n− 1)

n

17. Compute p(n) for n = c, c+ 1, ..., N using

p(n) = ρπ(n− 1)

18. Compute performance measures using E[L] =
∑N

i=1 ip(i) and E[W ] = E[L]/λ.

Belowwe provide adaptations of this algorithm to related models by specifying the steps
that need to be modified.

Adaptation to the GI/M/c/N model with ρ < 1
In this case we replace step 4 by inputing N as a predetermined value, and adjust the

last row of the transition matrix so that p(N, i) = p(N − 1, i), i = 0, . . . , N .

Adaptation to the GI/M/c/N model with ρ ≥ 1
In this case we modify the following steps.
1. Modify step 1 to check for ρ ≥ 1
2. Remove step 3.
3. Insure that p(N, i) = p(N − 1, i), i = 0, . . . , N
4. Modify step 4 to input N as a predetermined value
5. Modify step 11 to iterate on j = 0, 1, . . . , N − 1
6. Modify step 12 to input π′(N) = 1
7. Modify step 13 so that j = N − 1, . . . , 0.

Adaptation to the GIX/M/c/N model
We refer to cases 2 and 3 in Section 3.
1. Repeat steps 1 and 2 only in the above algorithm.
2. Compute p∗(i, j) as in Section 3 for case 2 and case 3
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