
1. Introduction
Service systems are typically not designed to meet the peak demand. Customers, in gen-

eral, tolerate a certain amount of waiting before frustration and dissatisfaction with the level
of service sets in. Thus, it is prudent to provide service at a normal or lower rate, leading to a
steadily increasing waiting line and increase the service rate when the potential waiting time
approaches the limit of customers’ tolerance. This is especially appropriate when arrivals
are subject to periodic or random fluctuations. In the design of such systems, one needs to
balance the need to avoid customer dissatisfaction with the need for high utilization of the
servers and the cost of service rate changes. We refer the readers to [8] for the practical
significance of this model. A simple and direct approach to managing queue size in such
systems is to increase the service rate when the queue builds up sufficiently, and to bring
the waiting line down to a reasonable level before reducing the service rate to the normal
level. Gebhard [3] coined the term hysteretic control, to describe such two level control of
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service rates. Increasing the service rate for a short time typically requires the use of more
expensive resources (e.g., a manager works as a checkout clerk, use of expensive gasoline
power generators to meet the peak demand to supplement the base capacity provided by the
larger and less expensive coal or nuclear generators) and should be used sparingly.

Early analysis of exponential queues with hysteretic control considered the equilibrium
behavior of the number in the system [3, 5, 11]. Tijms [10] Federgruen and Tijms [2]
among others [1] studied the determination of the optimal values of u (upper control limit)
and l (lower control limit) by considering the cost of waiting customers and the costs of
operating the server at the two service rates. Neuts and Rao [6] considered a system with
phase type service time and finite waiting space. They introduced the cost of lost customers
to the analysis and developed algorithmic methodology to study the effect of service time
distribution.

For the basic exponential queuing system with two level hysteretic control, results for
the number in system are obtained in closed form [3] but no analysis of the behavior of
the system under various parameter values has been carried out. More importantly, the
waiting time of customers has not been studied, mainly because the service rate can change
several times during a customer’s sojourn through the system [5]. Similarly, analysis of the
time spent by the server at each service rate under equilibrium conditions has also not been
studied. These characteristics provide valuable insight into the system behavior useful to
the decision makers. This paper proposes an algorithmic methodology to compute these
important system characteristics and present a detailed description of the system behavior
under various parameter values. The subscripts n and h are used throughout the paper to
identify parameters and system characteristics when the system is operating at the normal
and higher service rates respectively. Properties of phase type distributions and related
computational considerations for use in this paper are presented in the Appendix for readers’
ready reference.

2. Mathematical Model
The arrival process of customers is characterized by a Poisson stream of rate λ. Service

times are exponentially distributed with either the normal rate (µn) or the higher rate (µh).
Service rate is increased from µn to µh when the number of customers exceeds the upper
threshold (u), and returns to µn when the number drops below the lower threshold l, (1 ≤
l < u).

System state is described by the two tuple (i, k), where i denotes the number of cus-
tomers waiting for or receiving service, and k denotes the state of the server, taking values
0 or 1 depending on whether the server is operating at the normal or higher service rate. For
this system, the service rate will always be at the normal level (i.e., k = 0) when i is below
l, and will always be at the higher rate (i.e., k = 1) when i is above u. When i is between
l and u (l ≤ i ≤ u), there will be two states for each value of i, corresponding to the two
service rates (i.e., one each for k = 0 and k = 1).
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Arranging the states in lexicographic order, in increasing order of k and i, in that or-
der, the system dynamics can be described by a continuous parameter Markov chain with
infinitesimal generator Q as shown in Figure 1, where, θn = −λ − µn and θh = −λ − µh.
In the infinitesimal generator below, states corresponding to normal service rate are denoted
in italics and states corresponding to higher service rate are denoted in bold.

Q =

0 1 2 . l−1 l l+1 . u l l+1 . u u+1 u+2 . . .
0 −λ λ
1 µn θn λ
2 µn θn λ
· · · . . .
l−1 µn θn λ
l θn λ

l+1 µn θn λ
· · · . . .
u µn θn λ
l µh θh λ

l+1 µh θh λ
· · · . . .
u µh θh λ

u+1 µh θh λ
u+2 µh θh λ
. . . .
. . .

Figure 1. Infinitesimal Generator.

Let the row vector z = [x,y] denote the equilibrium probability vector of the genera-
tor Q shown in Figure 1, where, x = [x0, x1, x2, · · · xu−1, xu] and y = [yl, yl+1, yl+2, · · · ]
represent equilibrium probabilities of being in the states where the server is operating at the
normal and higher service rates respectively. x is of dimension u+ 1, and the dimension of
y is infinite. The following results are due to Gebhardt [3], adapted to the notation in this
paper.

x0 =

[
1

1− ρn
− (u− l + 2) ρun (ρn − ρh)

(1− ρu−l+2
n ) (1− ρh)

]−1

,

xr = x0 ρ
r
n, for r = 1, 2, · · · l − 1,

xr = x0

(
ρrn − ρu+1

n

1− ρu−l+2
n

)
, for r = l, l + 1, l + 2, · · · u,
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yr = x0 A

(
ρh − ρr−l+2

h

1− ρu−l+2
h

)
, for r = l, l + 1, l + 2, · · · u, u+ 1,

where, A = ρun

(
1− ρn
1− ρh

) (
1− ρu−l+2

h

1− ρu−l+2
n

)
.

yu+2 = x0 A ρ2h,

yr = yr−1ρh, for r = u+ 3, u+ 4, · · ·∞.

Equilibrium probability vector z is indeterminate at ρn and/or ρh is equal to 1. This can
be resolved by the application of L’Hospital’s rule. z can also be evaluated using iterative
methods such as those used in [7], which are effective even when ρn and/or ρh are equal to 1.
The following results for the moments of N , the number in the system, are due to Gebhard
[3].

E(N) = x0

[
ρn

(1− ρn)2
− (u− l + 2)ρun(ρn − ρh)

(1− ρu−l+2
n )(1− ρh)

{
u+ l − 1

2
+

1− ρnρh
(1− ρn)(1− ρ2)

}]

E[N(N − 1)] = x0

[
2ρ2n

(1− ρn)3
− (u− l + 2)ρun(ρn − ρh)

(1− ρu−l+2
n )(1− ρh){

3(l − 1)(u− 1) + (u− l + 1)(u− l)

3
+

(u+ l − 1)(1− ρnρh)

(1− ρn)(1− ρh)
+

2(ρn + ρh − 3ρnρh + ρ2nρ
2
h)

(1− ρn)2(1− ρh)2

}]

Variance and coefficient of variation of N can be computed from the above results. The
following additional measures of system performance are defined to facilitate the discussion
of the system behavior in Section 5.

1. φn and φh, the proportions of times spent by the server at the normal (including idle
time) and higher service levels are given by:

φn =
u∑

k=0

xk, and

φh =
∞∑
k=l

yk.

2. ηn and ηh, the proportions of customers served while the server is operating at the
normal and higher service rates are given by:

ηn =
(φn − x0)µn

(φn − x0)µn + φhµh

, and

ηh =
φhµh

(φn − x0)µn + φhµh

.
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3. µeff , the effective steady state rate at which the server operates is given by,

µeff = φnµn + φhµh.

The server is idle with probability x0 at the normal service rate.

4. µeq, the service rate in an equivalent M/M/1 queue with arrival rate λ and average
number in the system equal to E(N) can be obtained by considering the properties of
M/M/1 queue as follows.

µeq =
1 + E(N)

λE(N)

3. Time spent by the server at each service rate
The server can be in one of two macro states, namely normal and high service rate.

Let random variables tn and th respectively denote the times spent by the server at normal
and high service rates during each visit to the respective macro state, when the system is
operating under steady state conditions.

System state alternates between the two intervals tn (including the idle state) and th,
with the start of tn(th) representing the end of th(tn). tn is initiated when the number drops
from l+ 1 to l by a service completion. tn ends when the number increases from u to u+ 1
by an arrival. tn and th represent alternative renewal processes.

3.1. Time spent at normal service rate

The random variable tn can be described as the time to absorption in the infinitesimal
generator Rn, where An is an absorbing state indicating the end of tn, e is a column vector
of 1’s and 0 is a row vector of 0’s.

Rn =

0 1 2 . l l+1 l+2 . u An

0 −λ λ
1 µn θn λ
2 µn θn λ
· · · . . .
l µn θn λ

l+1 µn θn λ
l+2 µn θn λ
· · · . . .
u µn θn λ
An 0

=

[
Tn −Tne
0 0

]
,

Figure 2. Interval tn.
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tn has a phase type probability distribution [6], with (u + 1) phases and representation
[αn, Tn] where αn is a (u+1) row vector of initial probabilities. Since tn always starts with
the number in the system equal to (l − 1), αn = [0 0 · · · 1 · · · 0 0], has all 0’s except for
a 1 in the lth position, corresponding to l − 1 customers in the system. E(tn) and V ar(tn)
can be obtained from the properties of phase type distributions [6].

3.2. Time spent at higher service rate

Let the random variable th describe the time to absorption in the infinitesimal generator
Rh , where Ah is an absorbing state denoting the end of th.

Rh =

Ah l+1 l+2 . u u+1 u+2 . . .

l+1 µh θn λ
l+2 µh θn λ
· · · . . .
u µh θn λ

u+1 µh θn λ
u+2 µh θn λ .
· · · . . .
Ah 0

=

[
Th −The
0 0

]
,

Figure 3. Interval th.

th has a phase type probability distribution with representation [αh, Th] where αh is
a row vector of initial probabilities. Since th always starts with (u + 1) customers in the
system, αh = [0 0 · · · 1 · · · 0 0], with 0’s except for a 1 in the position corresponding to
u + 1 customers in the system. E(th) and V ar(th) can be obtained from the properties of
phase type distribution.

Unlike tn, th has infinite number of phases. For computational purposes Rh (and Th)
need to be truncated of at a value that does not result in significant loss in accuracy. This
issue is addressed in Section 4, in connection with the computation of the sojourn time den-
sity function. Details for the efficient computation of E(tn), V ar(tn), E(th) and V ar(th)
are provided in the Appendix.

th can also be described in terms of the busy period of an M/M/1 queue, which is defined
as the interval between the first arrival to the system when it is empty to the time when the
system becomes empty again. Busy period of an M/M/1 queue with arrival rate λ and
service rate muh is mathematically equivalent to the current system starting with (u + 1)
customers, and reaching u customers for the first time. Since th always starts with (u + 1)
customers in the system and ends with (l − 1) customers in the system, th is the sum of
(u − l + 2) busy periods of an M/M/1 queue with arrival rate λ and service rate µh. The
expected value and variance of the busy period are given by 1

µh−λ
and µh+λ

(µh−λ)3
respectively.

Since successive busy periods are statistically independent, the expected value and variance
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of th are given by u−l+2
µh−λ

and (u−l+2)(µh+λ)
(µh−λ)3

respectively. The probability density function
of the busy period of an M/M/1 queue can be expressed in terms of the modified Bessel
function of the first kind of order one. In principle, th can be obtained as the (u− l+2) fold
convolution of this density function but it is difficult to implement.

While the results of Sections 3.1 and 3.2 can be used to compute the density functions
for tn and th, numerical results are presented only for the moments of tn and th.

3.3. Direct Computation of E(Tn) and E(Th)

When only the expected values of tn and th are needed, they may be obtained directly
by appealing to the properties of alternating renewal processes [4].

P(system is operating at higher service rate) =
∞∑
k=l

yk =
E(th)

E(th) + E(tn)

Computing E(th) directly based on the discussion in Section 3, E(tn) can be obtained.

4. Sojourn Time of Customers
In systems with hysteretic control of service rates, sojourn (or waiting) time of a cus-

tomer is not determined at the time a customer enters the system, because the service rate
may change during the customer’s sojourn from arrival to service completion, possibly more
than once and even during service. This makes obtaining an analytical solution for the so-
journ (or waiting) time distribution function very difficult. In this paper, we adopt an algo-
rithmic approach, suggested by Neuts [6], by describing a virtual customer’s sojourn from
arrival to service completion, as the time to absorption in a continuous time Markov chain
(CTMC). By supplementing the state description in the CTMC described in Figure 1 with
additional information, it is possible to capture the effect of possible service rate changes
during the sojourn of a customer through the system.

Let Qs denote the modified CTMC. State of Qs is defined by the three tuple (i, j, k), i =
1, 2, . . . , j = 1, 2, ..i, and k = 0, 1, where i denotes the number in the system, j the position
of the customer in the waiting line, with j = 1 indicating that the customer is in service. As
before, k = 0 or 1 depending on whether the server is operating at normal or higher service
rate. It is known from Section 2 that for i < l, k is always 0, and for i > u, k is always
1. In the following discussion, whenever it is clear from the context, k will not be used in
the state description. As denotes an absorbing state, indicating the end of the sojourn of the
virtual customer. For stable systems (i.e., when ρh < 1) eventual absorption into the state
As from any initial state is certain.

State changes that occur due to arrivals and service completions when the system is
operating under steady state conditions are detailed below.

• A new arrival always increases i (number in the system) by 1 but does not affect j, the
position of the customer already in the queue.
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– A new arrival encounters an empty system with probability x0. This arrival en-
ters the system in state (1, 1), with the new arrival representing the only customer
in the system and enters service immediately.

– A new arrival encounters i customers in the system with probability xi or yi
depending on whether server is operating at the normal of high service rate.
This arrival enters the system in state (i + 1, i + 1). (i.e., there will be (i + 1)
customers in the system with new arrival occupying the (i+ 1)th position). The
service rate remains the same except when i = u and the server is operating at
the normal service rate. In this case, the service rate increases from µn to µh.

– A new arrival cannot encounter l customers in the system while the server is
operating at the higher service rate because this state can only be reached by a
service completion.

• A service completion decreases the number in the system and advances the position
of the customers in the queue by 1.

– After a service completion, the service rate remains the same except if it occurs
when i = l. In this case, i drops to l − 1, j decreases by 1, and the service rate
decreases from µh to µn.

– Service completion from any state with j = 1, represents the end of the virtual
customer’s sojourn and leads to absorption in state As.

Qs for a system with u = 5 and l = 4 is shown in Figure 4, where the steady state
probabilities of an arrival entering the system in various states are shown in the column to
the left of the state descriptions.

Let the random variable S denote the sojourn time of a customer who enters the system
in steady state. S is the time to absorption in Qs and has a phase type probability distribution.
Partitioning the matrix Qs by separating the last row and last column corresponding to the
absorbing state As we have,

Qs =

[
T t
0 0

]
.

Let αs describe the vector of initial probabilities for Qs (i.e., the system state immedi-
ately following the arrival of a customer in steady state). The last element of αs indicates
the probability of the system starting in the state As and will be 0. The probability distribu-
tion and density functions as well as the first two moments of X can be obtained from the
properties of phase type distributions described in the Appendix.

The matrix Qs is infinite and for computational purposes it must be truncated at a reason-
able value such that its effect on the accuracy of quantities computed is within acceptable
tolerances. This truncation point can be established by recognizing that at higher service
rate, the system acts as an M/M/1 queue with arrival rate λ and service rate µh and ρh = λ

µh
.
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· · · · · · · · ·
As 0

Figure 4. Generator Qs when u = 5 and l = 4.
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For this M/M/1 queue, a truncation point can be set such that the probability mass lost due
to truncation is limited to an arbitrarily small value ε as,

P (Number in system ≥ m) = (ρh)
m < ε, or

m ≥ log(ε)

log(ρh)
.

For the system under consideration, the higher service rate always starts with u + 1
customers in the system and ends with l − 1 customers in the system. Thus, a truncation
value of n = m+ u− l + 2, will ensure that no more than ε of probability mass is lost due
to truncation.

The effect of truncation is to cutoff arrivals into the system when the number in system
reaches n. A small improvement in accuracy can be achieved by considering the probability
of an arrival encountering n customers in the truncated system as

∑∞
i=n yi.

The dimension of the truncated matrix Qs will be n(n + 1)/2. This can be quite large,
especially when ρh is close to 1. Thus, evaluation of fs(x), especially if required at a set
of finely spaced values of S, is computationally very demanding. When the matrix P and
vector p are sparse, as in this case, computation of vectors ψ(k) can be organized efficiently
as described in the Appendix.

Waiting time (W ) density function can be computed by modifying Qs to obtain Qw as
follows.

• Remove all states with j = 1. States with j = 2 will lead to absorption in state Aw at
the end of service.

• All initial probabilities will remain the same except for the deletion of x0 correspond-
ing to state (1, 1).

• The initial probabilities sum to 1 − x0. Correspondingly, the waiting time density
function will have an impulse function at W = 0 equal to x0, corresponding to an
arrival encountering an empty system and thus, having zero waiting time.

• To compute the conditional waiting time distribution, the vector of initial probabilities
need to be normalized to sum to 1.

5. Numerical Results for System Behavior
This Section presents a summary of observations on the behavior of the system under

various traffic intensities (ρn and ρh), and upper and lower control limits (u and l). This
summary is based on an extensive set of computer runs for a wide range of values for ρn
(0.7 to 1.3), ρh (0.4 to 0.8), u (5 to 40), and l (1 to u, with l = 1 meaning that the higher
service rate is maintained until the system is empty). In the interests of brevity, detailed
tables and graphs are presented only for two combinations of (ρn, ρh), namely, (0.9, 0.7)
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and (1.2. 0.6) and a limited set of values for u and l. Without loss of generality, λ = 1 is
used, implying that the time unit is set equal to the mean interarrival time.

It is useful to compare the performance measures of the system under consideration
(henceforth referred to as the hysteretic system) with those of M/M/1 queues with the same
arrival rate, and service rates µn and/or µh (referred to as MM1n and MM1h). In the tables
below, wherever appropriate, relevant information for the MM1n and/or MM1h queues is
included for ready comparison with the hysteretic system. For example, in Table 1, which
summarizes the values of x0, values of the probabilities of empty system for MM1n and/or
MM1h are included. No data is presented for MM1n systems with ρn ≥ 1. Subscript n
and h have the same meaning as before.

Table 1. Probability of an empty system (x0)
ρn = 0.9, ρh = 0.7, λ = 1 (x0n = 0.1, x0h = 0.3)

u/l 1 5 10 20 30 40
5 0.202 0.171

10 0.159 0.145 0.132
20 0.124 0.120 0.116 0.109
30 0.110 0.109 0.107 0.105 0.103
40 0.104 0.104 0.103 0.103 0.102 0.101

ρn = 1.2, ρh = 0.6, λ = 1 (x0h = 0.4)
5 0.159 0.084

10 0.092 0.050 0.027
20 0.046 0.024 0.012 0.004
30 0.030 0.015 0.007 0.002 0.001
40 0.022 0.011 0.005 0.001 0.000 0.000

Table 2. Mean Number in the system (E(N))

ρn = 0.9, ρh = 0.7, λ = 1 (E(Nn) = 9.0, E(Nh) = 2.33)
u/l 1 5 10 20 30 40

5 3.070 3.457
10 4.050 4.316 4.843
20 5.850 5.962 6.204 6.870
30 7.163 7.208 7.309 7.619 7.993
40 8.004 8.021 8.061 8.191 8.366 8.551

ρn = 1.2, ρh = 0.6, λ = 1 (E(Nh = 1.5)
5 2.983 3.925

10 4.944 5.855 7.612
20 9.363 10.262 12.034 16.429
30 14.082 14.989 16.789 21.253 26.099
40 18.931 19.846 21.668 26.180 31.055 36.021
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Tables 1 and 2 summarize the values of x0 and E(N). Since λ is to 1, values in Table 2
also represent the values of E(S). Increasing u, or increasing l for a given u (i.e., decreasing
(u − l)) increased E(N), as a result of the system spending increasing amount of time at
the normal service rate, thus serving customers at a slower rate. When ρn < 1, the value
of x0 and E(N) fell between the corresponding values for MM1n and MM1h systems.
Increasing u, moved these values away from the values for MM1h and closer to the values
for MM1n. When ρn > 1, the value of E(N) were always greater than the corresponding
values for MM1h system and, except for very small values of u, x0 is very close to zero.

Table 3. Effective Service rate (µeq)

ρn = 0.9, ρh = 0.7, λ = 1 (µn = 1.11, µh = 1.429)
u/l 1 5 10 20 30 40

5 1.224 1.190
10 1.177 1.162 1.147
20 1.137 1.133 1.129 1.122
30 1.122 1.121 1.119 1.117 1.115
40 1.116 1.115 1.115 1.114 1.113 1.112
ρn = 1.2, ρh = 0.6, λ = 1 (µn = 0.833, µh = 1.667)

5 1.133 1.070
10 1.077 1.041 1.022
20 1.038 1.020 1.010 1.003
30 1.025 1.013 1.006 1.002 1.001
40 1.018 1.009 1.004 1.001 1.000 1.000

Table 4. Service rate in an equivalent M/M/1 system (µeff )

ρn = 0.9, ρh = 0.7, λ = 1 (µn = 1.11, µh = 1.429)
u/l 1 5 10 20 30 40

5 1.326 1.289
10 1.247 1.232 1.207
20 1.171 1.168 1.161 1.146
30 1.140 1.139 1.137 1.131 1.125
40 1.125 1.125 1.124 1.122 1.120 1.117
ρn = 1.2, ρh = 0.6, λ = 1 (µn = 0.833, µh = 1.667)

5 1.335 1.255
10 1.202 1.171 1.131
20 1.107 1.097 1.083 1.061
30 1.071 1.067 1.060 1.047 1.038
40 1.053 1.050 1.046 1.038 1.032 1.028

It is interesting to compare µeq and µeff (defined in Section 2) summarized in Tables
3 and 4. It is important to note that for stable systems (i.e., ρh < 1), µeq will always be
greater than λ (in this case > 1). µeq is always found to be greater than µeff , indicating that
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a hysteretic system is more efficient than an equivalent M/M/1 system (defined as one with
the same arrival rate and same expected number in the system). This is further supported by
noting that all values of x0 from Table 1, are smaller than probabilities of emptiness for the
equivalent system obtained as (µeff − 1) (since λ = 1). Hysteretic systems, however, have
the additional cost of service rate changes.

Values of µeq and µeff always fell between the service rates for MM1n and MM1h
systems. As u increased, µeff gradually approached µn when ρn < 1, and approached
λ (= 1, the minimum equivalent service rate required for system stability), when ρn > 1.
Effect of l is similar but moderate.

Table 5. Percent of time spent at high service rate (φh)

ρn = 0.9, ρh = 0.7, λ = 1
u/l 1 5 10 20 30 40

5 35.58% 24.77%
10 20.79% 15.86% 11.34%
20 8.27% 6.93% 5.49% 3.26%
30 3.51% 3.09% 2.59% 1.74% 1.07%
40 1.49% 1.35% 1.18% 0.86% 0.59% 0.37%

ρn = 1.2, ρh = 0.6, λ = 1
5 35.93% 28.36%

10 29.18% 24.96% 22.69%
20 24.58% 22.43% 21.22% 20.39%
30 22.95% 21.53% 20.72% 20.19% 20.06%
40 22.16% 21.10% 20.50% 20.11% 20.03% 20.01%

Table 6. Percent of customers served at high service rate(ηh)
ρn = 0.9, ρh = 0.7, λ = 1

u/l 1 5 10 20 30 40
5 50.82% 35.38%

10 29.70% 22.66% 16.20%
20 11.81% 9.91% 7.84% 4.66%
30 5.01% 4.41% 3.70% 2.48% 1.53%
40 2.13% 1.93% 1.69% 1.23% 0.84% 0.52%

ρn = 1.2, ρh = 0.6, λ = 1
5 59.89% 47.26%

10 48.64% 41.60% 37.81%
20 40.97% 37.38% 35.36% 33.98%
30 38.25% 35.88% 34.53% 33.65% 33.44%
40 36.93% 35.16% 34.16% 33.52% 33.38% 33.35%

Tables 5 and 6 summarize φh and ηh, the percent of time spent by the system at the
higher service rate, and the percent of customers served at the higher service rate. As u and
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l increased, φh and ηh decreased, with the effect of u being more pronounced than l. ηh is
always higher than φh because more customers are served per unit time at the higher service
rate.

Table 7. Mean value of tn (E(tn))

ρn = 0.9, ρh = 0.7, λ = 1
u/l 1 5 10 20 30 40

5 25.35 14.18
10 97.80 86.62 36.49
20 543.53 532.35 482.22 138.28
30 1990.00 1978.80 1928.70 1584.70 430.21
40 6306.50 6295.30 6245.20 5901.30 4746.70 1267.40

ρn = 1.2, ρh = 0.6, λ = 1
5 16.05 7.58

10 40.04 31.57 10.22
20 96.65 88.18 66.84 11.71
30 156.11 147.64 126.29 71.17 11.95
40 216.02 207.55 186.20 131.08 71.87 11.99

Table 8. Mean value of th (E(th))

ρn = 0.9, ρh = 0.7, λ = 1
u/l 1 5 10 20 30 40

5 14.00 4.67
10 25.67 16.33 4.67
20 49.00 39.67 28.00 4.67
30 72.33 63.00 51.33 28.00 4.67
40 95.67 86.33 74.67 51.33 28.00 4.67

ρn = 1.2, ρh = 0.6, λ = 1
5 9.00 3.00

10 16.50 10.50 3.00
20 31.50 25.50 18.00 3.00
30 46.50 40.50 33.00 18.00 3.00
40 61.50 55.50 48.00 33.00 18.00 3.00

Tables 7 and 8 summarize the values of E(tn) and E(th). Increasing u results in fewer
increases in service rate so that the server spends more time at the normal service rate, giving
larger E(tn). E(th) clearly increases with increasing (u − l) (i.e., decreasing l for a given
value of u). It follows that increasing u for a given l will result in increases in both E(tn)
and E(th).

When ρn < 1, the server enters the higher rate less frequently and spends relatively
more time at the normal service rate compared to when ρn > 1. For example, when u=20
and l=10, the ratio of E(tn) to E(th) was 17.22 when ρn = 0.9, ρh = 0.7. The same ratio

C  Rao

14



was 3.71 when ρn = 1.2, ρh = 0.6. These results can be explained by considering tnx, the
time taken by the system, when operating at normal service rate, to visit any state (r + 1)
for the first time, starting from the state r. Since tn starts with (l−1) in the system and ends
with (u+ 1) in the system, tn is the sum of (u− l + 2) independent intervals of tnx. When
ρn < 1, there will be a drift towards smaller number in the system so that the interval tnx,
and correspondingly tn, can be very large. When ρn > 1, the drift will be towards larger
levels, so that the interval tnx, and correspondingly tn, will be relatively small. In both cases,
th depends very strongly on the value of (u− l).
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0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Eq
ui
lib

riu
m
 P
ro
ba

bi
lit
y

Number in the system

MM1n MM1h
L = 1 L = 5
L = 10 L = 15
L = 20

Figure 6. Distribution of Number in System (ρn=0.9, ρh=0.7, u=20)

Queueing Models and Service Management

15



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Eq
ui
lib

riu
m
 P
ro
ba

bi
lit
y

Number in the system

MM1h

L = 1

L = 5

L = 10

Figure 7. Distribution of Number in System (ρn=1.2, ρh=0.6, u=10)
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Figure 8. Distribution of Number in System (ρn=1.2, ρh=0.6, u=20)

Figures 5 to 8 display the distributions of number in the system. These distributions are
dramatically different for ρn < 1 and ρn > 1. For systems with ρn < 1 (Figures 5 and 6),
they are close to a geometric distribution, with MM1n and MM1h systems serving as the
upper and lower bounds. For systems with ρn > 1 (Figures 7 and 8), the probability dis-
tributions have a distinct mode and the distributions got “peekier” (positive and increasing
kurtosis) as l is increased (for a given u), with the mode occurring near l.

Figures 9 to 12 present the sojourn time density functions for the same set of parameter
values as in Figures 5 to 8. For systems with ρn < 1 (Figures 9 and 10), sojourn time density
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Figure 9. Sojourn Time Density (ρn=0.9, ρh=0.7, u=10)
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Figure 10. Sojourn Time Density (ρn=0.9, ρh=0.7, u=20)

functions are similar in shape to an exponential density function, falling between the sojourn
times for M/M/1n and M/M/1h queues. The effect of l is relatively small and got less
pronounced as u increased. For systems with ρn > 1 (Figures 11 and 12), as l increased (for
a given u), the probability mass shifted to lower values of sojourn time. For most parameter
values, the density functions appeared similar to a normal distribution.

Tables 9 and 10 summarize s(N) and s(S), the standard deviations of N and S. They
also include the standard deviations of number in the system (=

√
ρ

(1−ρ)
) and sojourn time (=

E(S) because λ = 1) for MM1n and MM1h systems. s(N) and s(S) are always less than
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Figure 11. Sojourn Time Density (ρn=1.2, ρh=0.6, u=10)
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the corresponding values for E(N) (=E(S)) in Table 2, indicating that CV (N) and CV (S)
are always less than 1. s(N) and s(S) increased with increasing u and l. Together, Tables
2, 9 and 10 indicate that the overall behavior of the hysteretic system is less variable than
both MM1n and MM1h system due to the moderating effect of the service rate changes.
s(S) is always smaller than s(N) because when the server is operating at higher service
rate, customers are served at a faster rate resulting sojourn time being less variable than the
number in the system.

Finally, Figures 13, 14 and 15 display the probability sub-vectors x and y on the same
graph for comparison. In these figures, for i < l and i > u, the total probability of i in
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Table 9. Standard Deviation of N (s(N))

ρn = 0.9, ρh = 0.7, λ = 1 (s(Nn) = 9.487, s(Nh) = 2.789)
u/l 1 5 10 20 30 40

5 3.063 3.190
10 3.700 3.785 4.094
20 5.251 5.281 5.406 6.007
30 6.644 6.656 6.705 6.978 7.462
40 7.711 7.715 7.735 7.849 8.080 8.395

ρn = 1.2, ρh = 0.6, λ = 1 (s(Nh) = 1.936)
5 2.489 2.577

10 3.517 3.428 3.549
20 5.975 5.698 5.288 4.945
30 8.617 8.252 7.590 6.240 5.552
40 11.344 10.929 10.135 8.274 6.606 5.755

Table 10. Standard deviation of S (s(S))
ρn = 0.9, ρh = 0.7, λ = 1 (s(Sn) = 9.0, s(Sh) = 2.33)
u/l 1 5 10 20 30 40

5 2.543 2.672
10 3.149 3.225 3.560
20 4.696 4.721 4.846 5.480
30 6.104 6.114 6.161 6.443 6.948
40 7.186 7.190 7.209 7.324 7.565 7.891

ρn = 1.2, ρh = 0.6, λ = 1 (s(Sh) = 1.5)
5 1.951 2.095

10 2.962 2.851 3.110
20 5.432 5.095 4.674 4.641
30 8.094 7.680 6.949 5.786 5.469
40 10.842 10.387 9.526 7.636 6.459 5.989

the system is the same as the individual probabilities in vectors x or y. For l ≤ i ≤ u, the
total probability is the sum of the corresponding probabilities from x and y. These graphs
provide a sense of the relative values of probabilities of the server being in normal or higher
service rate when the number in the system is between l and u for systems with ρn < 1 and
ρn > 1.

In summary, the upper control limit u has the more dominant effect on the system char-
acteristics than the lower control limit l. The difference (u − l) has a strong impact on the
frequency of service rate changes, and the mean and variance of the times spent at the two
service levels. For systems with ρn < 1, the sojourn time density functions appear to be
closer in shape to an exponential density function and for systems with ρn > 1, the sojourn
time density functions appear to be closer in shape to a normal density function. Many ob-
servations are consistent with intuitive expectations, and the tools developed in this paper
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Figure 13. Distribution of Number in System (ρn=1.2, ρh=0.6, u=25, l=10)
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Figure 14. Distribution of Number in System (ρn=1.2, ρh=0.6, u=25, l=20)

provide the means of quantifying the intuitive expectations. Some observations, especially
those dealing with the sojourn time density functions present new insights into the system
behavior.

6. Concluding Remarks
Let the costs per unit time of operating the server at the normal and higher service rates

be given by cn and ch respectively. Let the fixed cost of increasing [decreasing] the service
rate be denoted by ci [cd]. Let cs denote the cost per unit time, associated with the time
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Figure 15. Distribution of Number in System (ρn=0.9, ρh=0.7, u=15, l=10)

spent by a customer in the system. C1, C2, and C3, the expected costs per unit time of (i)
operating the server, (ii) service rate changes, and (iii) waiting customers under equilibrium
condition are given by,

C1 =

[
u∑

i=0

xi

]
cn +

[
∞∑
i=l

yi

]
ch,

C2 = [λxuci + yu+1cd] ,

C3 = [E(N)] cs.

The algorithms developed in this paper can be used interactively to perform an efficient
search for the optimal combination of trigger points for given values of ρn and ρh. One
can start with a reasonable set of values for l and u and fine tune them until the desired
performance measure is optimized. Strategies for the search algorithms can be based on the
heuristic understanding of system behavior discussed in Section 5 and any other available
information about the system behavior. Such a search procedure permits the analyst to
incorporate intuitive understanding of the system behavior into the search process and will
likely lead to the optimal solution with reduced effort.

As studied in Neuts and Rao [7], systems with finite waiting space presents interesting
questions. In such systems, C1, C2, and C3, defined above must be balanced with the cost
of lost customers when the waiting space is full. The methodology presented in this paper
can be used as is to study such systems by simply replacing the truncation level n discussed
in Section 4, by the size of the waiting space. The proposed algorithmic methods can also
be readily adopted to systems with k-level hysteretic control.
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Appendix
Phase Type Probability Distributions

A probability distribution is said to be of phase type or PH, if it can be described as the
probability distribution of the time until absorption in a finite Markov chain [6]. Consider
an m+ 1 state continuous time Markov chain with infinitesimal generator

Q =

[
T t
0 0

]
,

and initial probability row vector (α, αm+1) where, t = −Te and e is a column vector of
1s. If T is non-singular, eventual absorption into the state (m + 1) from any initial state
is certain. αm+1 represents the probability that absorption occurs instantaneously at the
start, and represents an impulse function at t = 0. PH distributions are generalizations of
the Erlang and hyperexponential distributions and remain analytically and computationally
tractable under a variety of operations in the analysis of stochastic models. They have been
used successfully in developing efficient and computationally stable algorithms for system
characteristics for a wide variety of queueing models [6]. We refer the reader to Neuts [7]
for a complete discussion of the properties of PH distributions.

Let X be the random variable denoting the time till absorption in Q. X is said to have a
phase type distribution with representation (α, T ). The probability distribution and density
functions are given by,

F (x) = 1−α eTx e, x > 0,

f(x) = α eTx t, x > 0.

The first two moments of X are given by,

E(X) = −αT−1e,

V ar(X) = 2αT−2e− (αT−1e)2.

Computation of the moments

When the number of phases is large, matrix inversion in implementing the above equa-
tions may be avoided by recognizing that one only needs the vectors T−1 e and T−2 e.
Rewriting E(X) and V ar(X) as

E(X) = −αT−1e = αφ,

V ar(X) = 2αT−2e− (E(X))2 = 2αω − (E(X))2

φ(= −T−1 e) and ω(= −T−2 e) can be evaluated by solving the following two systems of
equations sequentially.

T φ = −e,
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T ω = −φ.

In many cases, matrix T is very sparse, making it highly suitable to use an iterative
approach. The basic principle calls for the infinitesimal generator T to be split as T =
T1 − T2 where T1 is a non-singular matrix. The equation Tφ = e can then be rewritten as
T1φ = T2φ+ e which suggests the iterative scheme given by,

T1φ(t+ 1) = T2φ(t) + e ,

where φ(t) is the estimate of φ obtained at iteration t. Under fairly general conditions,
convergence to the correct value of φ is guaranteed. Many schemes are described in the
literature for the choice of T1 and T2 and perhaps the simplest of them is the point Gauss-
Seidel scheme, in which T2 = Tut+Tlt and T1 = −Td, where Td, Tut and Tlt are the diagonal,
strictly upper triangular and strictly lower triangular portions of T . Higher moments can be
computed sequentially by solving additional systems of equations.

Computation of the density function

Computing the density or distribution functions require the evaluation of eTx. The pres-
ence of negative diagonal elements in T makes the direct computation of eTx numerically
hazardous and is not recommended. For computational stability and error control, the rec-
ommended method is uniformization [9], where computations are performed in terms of a
corresponding discrete time Markov chain, embedded in a Poisson process with rate τ equal
to the absolute value of the most negative diagonal element in T [9].

Let K denote a substochastic matrix defined as follows.

K =
1

τ
Q+ I =

[
P p
0 1

]
.

We then have,

eTx =
∞∑
k=0

e−τx (τx)
k

k!
P k.

The distribution and density functions can be expressed as,

F (x) = 1−α eTx e = 1−α

∞∑
k=0

e−τx (τx)
k

k!
P ke, x > 0,

f(x) = α eTx t = α

∞∑
k=0

e−τx (τx)
k

k!
P k t, x > 0.

These equations can be expressed as follows for efficient algorithmic implementation.

Fs(x) = 1− e−τx

[
∞∑
k=0

ψ(k)e

]
,
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fs(x) = e−τx

[
∞∑
k=0

ψ(k)t

]
.

where,

ψ(0) = α

ψ(k) = (
τx

k
)ψ(k − 1)P, for k = 1, 2, · · ·

Only two vectors ψ(k) need to be stored as they are calculated recursively as the scalar
values of Fs(x) and fs(x) are accumulated. In many cases, as in in the present case, the
matrix P and vector p are very sparse so that the computations can be organized efficiently
without actually generating and storing P and p .

For extremely large values of τx (> 250 [4]), the value of e−τx may be very small and
lead to underflow problems. The method suggested in [9] should be followed under those
circumstances.

Evaluation of fs(x) would require the truncation of an infinite series. [9] suggests a
method to determine the cutoff value for k, which requires the inversion of matrix (I − P ).
When the dimension of the matrix (I − P ) is large, we may simply terminate the infinite
series when the individual term in the summation

∑∞
k=0 ψ(k)p drops below a preset arbi-

trarily small value. In implementing this method, it is important to remember that individual
terms in the summation increase initially when τx < k, but eventually start to decrease as k
increases.

In many applications, as in the present case, matrix P is infinite and needs to be trun-
cated at a reasonable value. The methods to be used for these two truncations depend very
much on the specific application. Truncation of the matrix T for the present system are
discussed in the main body of the paper.

Queueing Models and Service Management

25



C  Rao

26


