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Abstract: In this paper, we propose a kernel method for exact tail asymptotics of a random walk to
neighborhoods in the quarter plane, which is a general model for two-dimensional queueing systems
with many important applications in various areas including service management. This is a two-
dimensional method, which does not require a determination of the unknown generating function(s).
Instead, in terms of the asymptotic analysis and a Tauberian-like theorem. we show that the
information about the location of the dominant singularity or singularities and the detailed asymptotic
property of the unknown function at a dominant singularity is sufficient for the exact tail asymptotic
behaviour for the marginal distributions and also for joint probabilities along a coordinate direction.
We provide all details, not only for a ““typical” case. the case with a single dominant singularity for an
unknown generating function, but also for all non-typical cases which have not been studied before.
A total of four types of exact tail asymptotics are found for the typical case, which have been reported
in the literature. We also show that on the circle of convergence. an unknown generating function
could have two dominant singularities instead of one, which can lead to a new periodic phenomena.
Examples are illustrated by using this kernel method. This paper can be considered as a systematic
summary and extension of existing ideas, which also contains new and interesting research results.

Keywords: Exact tail asymptotics, generating functions, kernel methods, light tail, queueing systems,
random walks in the quarter plane, singularity analysis. stationary distributions.

1. Introduction

Two-dimensional discrete random walks in the quarter plane are classical models, that could be
either probabilistic or combinatorial. The probabilistic random walk in the quarter plane is a general
model for two-dimensional queusing systems. For example. the well-known Jackson open network,
join-the-shortest-queue system. priority queueing system, two-demand queues, systems with cross-
trained servers, 2x2 switches, processor sharing systems, etc. can all be modelled as a random walk
in the quarter plane. These queueing systems, as well as many others, represent important applications
in many fields, including the ones in service management. Studying these models is important and
often fundamental for both theoretical and applied purposes. For a stable probabilistic model, it is of
significant interest to study its stationary probabilities. However, only for very limited special cases,
a closed-form solution is available for the stationary probability distribution. This adds value to
studying tail asymptotic properties in stationary probabilities. since performance bounds and
approximations can often be developed from the tail asymptotic property. The focus of this paper is to
characterize exact tail asymptotics. Specifically, we propose a kernel method to systematically study
the exact tail behaviour for the stationary probability distribution of the random walk in the quarter
plane.
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The kernel method proposed here is an extension of the classical kernel method., first introduced
by Knuth [32] and later developed as the kernel method by Banderier et al.[3]. The standard kernel
method deals with the case of a functional equation of the fundamental form
K(x. V)F(x.v)=A(x.v)G(x)+ B(x.v) . where F(x.y) and G(x) are unknown functions. The
key idea in the kernel method is to find a branch y = y,(x). such that, at (x,v,(x)). the kernel
function 1s zero. or K(x, y(x))=0. When analytically substituting this branch mto the right hand

side of the fundamental form, we then have G(x)=—B(x. w(x))/ A(x. 3 (x)). and hence,

—A(x. v)B(x. v (x)) / A(x. vo(x)) + B(x. v)

Feey)= K(x.v)

However, applying the above idea to the fundamental form of a two-dimensional random walk does
not immediately lead to a determination of the generating function P(x.y). Instead, it provides a

relationship between two unknown generating functions #z(x) and z(y) . referred to as the

generating functions for the boundary probabilities. This is the key challenge in the analysis of using
the kernel method. Therefore, a good understanding on the interlace of these two functions is crucial.

Following the early research by Malyshev [43. 44]. the algebraic method targeting on expressing
the unknwon generating functions was further systematically updated in Favolle et al.[14] based on
the study of the kernel equation. The authors indicated in their book that: “Even if asymptotic problems
were not mentioned in this book. they have many applications and are mostly interesting for higher
dimensions.” The proposed kernel method in this paper is a continuation of the study in [14]. Research
on tail asymptotics for various models following the method (determination of the unknown generating
function(s) first) of [14] or other closely related methods can be found in Flatto and McKean [17],
Favolle and lasnogorodski [12]. Fayolle et al. [13]. Cohen and Boxma [8]. Flatto and Hahn [18]. Flatto
[19]. Wright [61], Kurkova and Suhov [34]. Bousquet-Melou [6]. Morrison [54], L1 and Zhao [38, 39],
Guillemin and Leeuwaarden [23], and Li et al. [36].

Different from the work mentioned above, which requires characterizing or expressing the
unknown generating function, such as a closed-form solution or an integral expression through
boundary value problems, the proposed kernel method only requires the information about the
dommant singularities of the unknown function, including the location and detailed asymptotic
property at the dominant singularities. Because of this, our method makes it possible to systematically
deal with all random walks instead of a model based treatment. In a recent research, Li and Zhao [40]
applied this method to a specific model, and Li et al.[36] to the singular random walks. More
applications of this kernel method become available during the period of preparing revised versions
of this paper, including [10]. [9]. [57]. [58]. and [62]. For exact tail asymptotics without a
determination of the unknown generating function(s) or Laplace transformation function(s), different
methods were used in the following studies: Abate and Whitt [1]. Lieshout and Mandjes [41].
Mivazawa and Rolski [52], Dai and Miyazawa [11].

Other methods for studying two-dimensional problems, mcluding exact tail asymptotics, also
exist, for example, based on large deviations, on properties of the Markov additive process (including
matrix-analytic methods). or on asymptotic properties of the Green functions. References include
Borovkov and Mogul’skii [5]. McDonald [45], Foley and McDonald [20, 21, 22|, Khanchi [27, 28],
Adan et al. [2], Raschel [56]. Mivazawa [48, 49, 50]. Kobayashi and Miyazawa [29], Takahashi et al.
[59]. Haque [24]. Mivazawa [47]. Miyazawa and Zhao [53]. Kroese et al. [33]. Haque et al. [25], L1
and Zhao [37]. Motyer and Tavlor [55], Li et al. [35], He et al. [26], Liu et al. [42], Tang and Zhao
[60]. Kobayashi et al. [31]. among others. For more references, people may refer to a recent survey on
tail asymptotics of multi-dimensional reflecting processes for queueing networks by Mivazawa [51].

The main focus of this paper is to propose a kernel method for exact tail asymptotics of random
walks in the quarter plane following the ideal in [14], based on which a complete description of the
exact tail asymptotics for stationary probabilities of a non-singular genus 1 random walk is obtained.
We claim that the unknown generating function 7 (x), or equivalently, m,(v). has either one or two
dominant singularities, and a total of four types of exact tail asymptotics exists: (1) exact geometric

decay: (2) a geometric decay multiplied by a factor of 7 "*: (3) a geometric decay multiplied by a
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factor of #77: and (4) a geometric decay multiplied by a factor of # . These results are essentially
not new (for examples see references [5, 20, 22, 49, 28]) except that the fourth type is missing from
previous studies for the discrete random walk, but was reported for the continuous random walk in
[11]. For the case of two dominant singularities with the same asymptotic property, a new periodic
phenomena in the tail asymptotic property 1s discovered, which has not been reported in previous
literature. For the tail asymptotic behaviour of the non-boundary joint probabilities along a coordinate
direction, a new method based on recursive relationships of probability generating functions will be
applied, which is an extension of the idea used in [40].

For an unknown generating function of probabilities, a Tauberian-like theorem 1s used as a bridge
to link the asymptotic property of the function at its dominant singularities to the tail asymptotic
property of its coefficient, or in our case, stationary probabilities. This theorem does not require the
monitonicity in the probabilities, which is required by a standard Tauberian theorem and cannot be
verified in general, or Heaviside operational calculus, which is usually very difficult to be rigorous.
However, the price paid for applying the Tauberian-like theorem requires more in analyticity of the
function and detailed information about all dominant singularities, or singularities on the circle of
convergence. Therefore we need to provide information about how many singularities exist on the
circle of convergence and their detailed properties, such as the nature of the singularity and the
multiplicity in the case of the pole, for the random walk. It is not always true that only one singularity
exists on the circle of convergence. Technical details are needed to address these issues.

The kernel method immediately leads to exact tail asymptotics in the boundary probabilities, in
both directions. based on which exact tail asymptotics in a marginal distribution will become clear.
However, it does not directly lead to exact tail asymptotic properties for the joint probabilities along a
coordinate direction, except for the boundary probabilities as mentioned above. Therefore, further
efforts are required. In this paper, we propose a method, based on difference equations of the unknown
generating functions, to do the asymptotic analysis, which successfully overcomes the hurdle for exact
tail asymptotics for joint probabilities.

The rest of the paper 1s organized mto eight sections. In Section 2, after the model description,
the so-called fundamental form for the random walk in the quarter plane is provided, together with a
stability condition. Section 3 contains necessary properties for the two branches (or an algebraic
function) defined by the kernel equation and for the branch points of the branches. These properties
are either directly from [14] or its further refinements. Section 4 consists of six subsections for the
purpose of characterizing the asymptotic properties of the unknown generating functions ;(x) and
m(y) at their dominant singularities. Specifically. two Tauberian-like theorems are introduced in
subsection 1; the mnterlace between the two unknown generating functions 1s discussed in subsection
2, which plays a key role m the proposed kemel method; detailed properties for singularities of the
unknown generating functions are obtained n subsections 3—5, which finally lead to the main theorem
(Theorem 4.8) in this section provided in the last subsection. In Section 5, asymptotic analysis for the
boundary generating functions is carried out, which directly leads to the tail asymptotics for the
boundary probabilities in terms of the Tauberian-like theorem. In Section 6, based on the asymptotic
results obtained for the generating function of boundary probabilities in the previous section, and the
fundamental form, exact tail asymptotic properties for the two marginal distributions are provided.
Exact tail asymptotic properties for joint probabilities along a coordinate direction is addressed in
Section 7, which is not a direct result from the kernel method. Instead, we propose a difference
equation method to carry out asymptotic analysis of a sequence of unknown generating functions. The
last section contributes to concluding remarks and two examples by applving the kernel method.

2. Description of the Random Walk

The random walk in the quarter plane considered in this paper to demonstrate the kernel method
is a reflected random walk or a Markov chain with the state space

Z2 ={(m.n).m.n are non-negative integers} . To describe this process, we divide the whole quadrant

7Z> into four regions: the interior S, ={(m.n).m.n=12,..} . horizontal boundary
Sy ={(m,0).m=1,2....}. vertical boundary S, ={(0,n);n=1,2,...},and theorigin S, = {(0.0)}.or
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7Z; =S, wS,uS,uUS,. In each of these regions. the transition is homogeneous. Specifically. let X, .
Xi. X, and X, be random vectors having the distributions, respectively. p;; with 7,7 =0.%1:

(0}

P with i=0,£1 and j=0.1; p¥) with i=0.1 and ;j=0.+1; and p”) with i,;=0.1.

Then, the transition probabilities of the random walk (Markov chain) L(r)= (L,(¢). L,(¢)) are given
by
P(L(t+1) = (my.my) | L(6) = (my. ;) =
PX. = (my —my.my =), i (my.m) €S (mh.m) €5,
{P(Xk =(m, —m.n, —m)), if(m,.n)eS,(m.n)eS, withk=0.1.2.
2.1. Ergodicity conditions

A stability (ergodic) condition can be found in Theorem 3.3.1 of Favolle et al. [14]. which has
been amended by Kobavashi and Mivazawa as Lemma 2.1 in [29]. This condition is stated in terms of
the drift vectors defined by

M =M. M,)= (Z:(pr,) Z;(pr,))
MY =M M) = (Zr(pr ). Z ;(Zp‘il)),
M(E) — (M:?):M;’)) — (Zi( f2)) Z }( f")
P
Theorem 2.1. (Theorem 3.3.1 in [14] and Lemma 2.1 in [29]) When M =0, the random walk is
ergodic if and only if one of the following three conditions holds:
1. M, <0, M, <0, MM -MMP <0 and MM —MM? <0
2. M, <0, M,20, M\MZ ~-MM? <0 and M <0 if M\"=0:
3 M, =20, M, <0, MM -MM" <0 and M? <0 if MP =0.

Readers may also refer to Theorem 6.1 in [7]. to which the above theorem is essentially equivalent.
Throughout the paper. we make the following assumption. unless otherwise specified:

Assumption 1. The random walk I.(t) is irreducible, positive recurrent and aperiodic.
Under Assumption 1. let 7, , be the unique stationary probability distribution of the random walk.

Remark 2.1. It should be noted that for a stable random walk, the condition M =0 is equivalent to
that both sequences {rm,,} and {m,} are lighi-tailed (for example, see Lemma 3.3 of [29]), which
is our focus of this paper. Therefore, Theorem 2.1 provides a necessary and sufficient stability
condition for the light-tailed case.

2.2. Fundamental form

Define the following generating functions of the probability sequences for the interior states.
horizontal boundary states and vertical boundary states, respectively,

7 2) = 33 Ty,

m=1 n=1

7(x) = Zfr,,,,o P
m=1

ol
B(V)=D Zoa V'

n=1
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The so-called fundamental form of the random walk provides a functional equation relating the
three unknown generating functions z(x.y). m(x) and m(y). To state the fundamental form, we
define

hix.y)y= m[ZZp,J ¥ —l]

i==14=-1

=a(x)y’ +b(x)y +c(x) = a(¥)x* +b(¥)x +E(»),

) = Z 3ty 1|

i=—1j=0

=a(x)y+h(x)=a()x +h(V)x+a).
1 1
h(x,y) = y[ DNy —l]
=@ (Mx+0:(1) = (X)) +b(x)y + 6 (x).

h(x.y)= [iip',ojx‘v’ - l]

=0 j=0

=aq(x)y+h(x)=a(y)x+ 5o(y),

a(x) = p.y; + poax + pax,

b(x)= pio— (1= poo)x+ prox’.

C(X)= poaa poax+ pax’,

a(¥)= pat poy+puys

b(¥) = pori— (1= poo)y + puay’.

C(V)=paat proy+puy.

a(x)= py+ phix+ pYe B () = pl —(1- ) x+ Hox,
a(y)=plo+ v by = ol —1+ Py, a(») = po + PNy
a (x) = pé? +pix. b (x) = pi =1+ plgx. &:(x) = pils + pilix

a0 =7+ pay+ p . b0 = 2 - (1= p2) v+ P,

a(x) = pi} + pYx, by () = pox—(1- ).

a( = A0+ Py )= pfly—(1- ).

The basic equation for the generating function of the joint distribution, or the fundamental form
of the random walk, is given by

—h(e, ) (e, y) = I (e, )m () + Iy (e, I3 () + o (x, y) - 2.h
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The reason for the above functional equation to be called fundamental is largely due to the fact that
through analysis of this equation. the unknown generating functions can be determined or expressed.
for example, through algebraic methods and boundary value problems as illustrated in Fayolle et al.
[14]. The kernel method presented here also starts with the fundamental form, but without expressing
generating functions first.

Remark 2.2. The generating function m(x,yv) is defined for the stationary probabilities =, , with
m.n >0, excluding the boundary probabilities. (2.1) was proved in (1.3.6) in |14]. Based on (2.1),
one can also obtain a similar fundamental form using generating functions including boundary

probabilities: T1(x, y) = Z;OZLORM X"y T (x) = Z;o”’mﬂ X" and T1,(y)= Z::oxoﬂ V'

For the conclusion of this section, we can easily check the following expressions, some of which
will be needed in later sections:

M, =a(l)—c(1)=a (1) +b (1)+& (1), M, = a(1)—&(1)=a (1) +b (1) +¢ (1), (2.2
MY =a()=a()+5 (1) +&(1). M =a(1)-&(1)=a(1)+A(1), (2.3)
M = a(1)=a(1) =& (1) +5(1). MY =@ (1) = d (1) +5(1) +e(1). 24

3. Branch Points and Functions Defined by the Kernel Equation

The property of the random walk relies on the property of the kernel function /2 and functions
A and A,. The kernel function plays a key role in the kernel method.

Definition 3.1. 4 random walk is called non-singular if the kernel function h(x.y), as a polynomial
in the two variables x and v over real numbers, is irreducible (equivalently, if h = fg then either
[ or g isaconstant) and quadratic in both variables.

Throughout the paper unless otherwise specified. we make the second assumption below.
Assumption 2. The random walk considered is non-singular.

The non-singular condition for a random walk is closely related to the irreducibility of the
marginal processes (¢t} and I,(¢). but they are not the same concept. A necessary and sufficient
condition for a random walk to be singular is given. in terms of p, ;. in Lemma 2.3.2 in [14]. Study

on tail asymptotics for a singular random walk is either easier or similar to the non-singular case.
which can be found in Li et al. [36].

The starting point of our analysis is the set of all pairs (x. ) satisfyving the kernel equation, or
B={(x,y)eC :h(x.y)= 0},
where € is the set of all complex numbers. The kernel function can be considered as a quadratic

form in either x or y with the coefficients being functions of y or x, respectively. Therefore,
the kernel equation can be written as

a(x)y? +b(x)y+c(x) =a(y)x> +b(¥)x+E(y)=0. 3.1

For a fixed x . the two solutions to the kernel equation as a quadratic form in y are given by
the quadratic formula if a(x)= 0. Denote ¥,(x) to be the root with the smaller modulus, and ¥, (x)
the root with the greater modulus. It is clear that that ¥,(x) =¥ (x) if and only if the discriminant
Di(x)=b"(x)—4a(x)e(x) is zero. Also, notice that non-singularity implies that a(x) = 0 and,
therefore. only up to two values of x could lead to a(x)=0 since a(x) isapolyvnomial of degree
up to 2.
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Similarly, for a fixed v. the two solutions to the kernel equation as a quadratic form in x are
given by X,(») and X, (v) . and X,(»)=X(v) if and only if the discriminant
D.(») =b (1)~ 4d(»E() s zero.

Itis important to study the set B.orequivalently Y (x) or X(y).sinceforall (x.y)e B with
| 7(x. y)|< oo, the right hand side of the fundamental form is also zero. which provides a relationship
between the two unknown generating functions 7z and .

According to (ii) of Theorem 5.3.3 in [14]. the functions X, () or X, (y) (Y,(x) and ¥ (x))
defined in this paper coincide the functions X,(v) or X (¥) (¥ and F ) in [14] due to the
uniqueness of the continuity. They are the two branches of the algebraic function X(y) (¥(x))
determined by the kernel equation.

The concept of branch points introduced below is important in the discussion of the property of
Y(x) (X(»).

Definition 3.2. A branch point of Y(x) (X(y))is avalue of x (v) such that D (x)=0
(D, (»)=0).

To discuss the branch points. notice that the discriminant D (x) (/[ (y)) is a polvnomial of
degree up to four. Since the two cases are symmetric. we discuss D, (x) in detail only. Rewrite D (x)
as

Di(x)=dx" +dyx’ + dox” +dix + d,.
where
dy = pfl,o - 4p-1,1p-1,-1,

ch =2po(poo— D=4 o+ poipaa)
d, = (Poo — 1 )2 + 2}’1,0}’—1,0 - 4(p1,lp—l,-l + PPt PoaPo1)-
dy = 2P‘l,o (o0 — 1)- 4(171,|P0,—1 + Poar1)-

dy=plo—4pup.

It can be easily checked that ¢ =0 and & <0.

When 73 is a polynomial of degree 4 (or d, = 0), there are four branch points. denoted by x;
(w). i=1,2.3.4. Without loss of generality, we assume that | x |<| x; |€] x5 [<] x4 |. When the degree
of D(x) is d<4. for convenience, we let x;;, =oo for integer & >0 such that d+k <4 . For
example, if =3, then x; =cc. This can be justified by the following: consider the polynomial
f)l(ﬁ) =D(x)/ ¥' in ¥.where ¥=1/x. Then, ¥=0 isa d -tuple zero of Di(¥). and therefore
x=oo can be viewed as a d -tuple zero of D (x).

The following lemma characterizes the branch points of ¥ (x) for all non-singular random
walks. including the heave-tailed case. or the case of M =0.

Lemma 3.1. 1. For a non-singular random walk with M, =0, Y(x) has two branch points x

and x, inside the unit circle and another two branch points x; and x, outside the unit circle. All
these branch points lie on the real line. More specifically,

M if po>2{papa . then 1<x <x, <owo;
2)if po=2{pupa.then 1<x3<x;=o;

B)if po<2ypap, then 1<x3 <—x, <oo, where the equality holds if and only if dy =dy = 0.
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Similarly,

@ if pro=2ypuapaa,then 0<x <x<I;

(5)if pro=24paipi1, then M =0 ana O=x =1,

6)if poio<24piipi, then 0<-—x <x, <1, where the equality holds if and only if d = dy = 0.

2. For a non-singular random walk with M, =0 (in this case M,#0 since we are only
considering the genus | case in this paper), either x> =1 if M, <0, 0r x3=1 if M,>0. In the
latter case, the system is unstable.

Proof. We only need to prove 3. and 6. since all other proofs can be found in Favolle et al. [14]
(Lemma 2.3.8 and Lemma 2.3.9). We provide details for 3. since 6. can be proved similarly. Suppose
otherwise x> —x,. From & <0 and d;<0. we obtain D (—x3)=—dsx; —d,xs > 0. On the other
hand, D(—w)=-x since d, <0, which implies that 7 (x)=0 has a fifth root in (-0, x), but
this is impossible. The contradiction shows that x; < —x;, . It is clear that the equality holds if and only
if di=dy=0.

Remarlk 3.1. Similar results hold for the branch points v, 1=1.2.3.4, of X (V).

Definition 3.3. p,, (p") is called X-shaped if p,; =0 (p*)=0) for all i and j such that
|i+ j|= 1. A random walk is called X-shaped if’ p,, and also p\ for k=1,2 are all X-shaped.
Remark 3.2. X-shaped transitions imply a certain kind of symmetry. Specifically, this syimmetry means
that if" x4, =0 is a dominant singularity for m(x) then —x,,, is also a dominant singularity.

Depending on at either even or odd state, the combined “influence” of these two dominant
singularities on the asymptotic property would be either doubled or disappeared. This periodic
behaviour is characterized in (5.5)—(3.8). This is similar to a periodic Markov chain, for which the
limiting behaviour should be considered at multiples of the period. In our case, if the limit is taken at
2k, then my.,, has the same behaviour as m,, when the random walk is not X-shaped.

Based on Lemma 3.1, we can prove the following result.
Corollary 3.1. x3=—x, ifandonlvif p,; is X-shaped.
Throughout the rest of the paper. we define [xi.x,|=[-.x]u[x5.00] when x <-1.
Similarly, [, ya]=[-.w]w[w.%]] when y, <—1. We define the following cut planes:
@.\.‘ = (C.\.' \ [x39x4]:~
C, =C,\[3. v,
(&x = (Cx \ [x39 Xy ] U [xl .0 ]9
C, =C,\[ys. yal v n. 2l
where ©, and ©C, arethe complex planes for x and y.respectively.
A list of basic properties of ¥, and } (X, and X)) is provided in the following lemma.

Lemma 3.2. I For |x|=1, |V(x)|£]1 and |Y,(x) =1, with equality only possibly for x=+1.
For x=1, we have
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Jor x= -1, the equality holds only if" p, ; is X-shaped, for which we have

16(—1)=—min[1, 20 =L1)J,
Spa o a(l)

¥(-1) = —max 1}&:&1) )
Spe al)

. The functions Y.(x), i=0.1, are meromorphic in the cut plane [l .. In addition,

(a) Yo(x) has two zeros and no poles. Hence Y,(x) is analytic in [ ,;

(b) Y (x) has two poles and no zeros.

(©) | Yo(x) g ¥ (x)|. in the whole cut complex plane (:Cx, and equality takes place only on the cuts.
3. The fimction Y,(x) can become infinite at a point x if and only if;

(2) pu=po =0, in this case, x=x,=%; or

by p.,=p.=0,inthiscase, x=x=0

Parallel conclusions can be made for functions X,(v) and X,(3).

All results in 1. come from Lemma 2.3.4 and Lemma 5.3.1 i [14] except for the expressions for
¥o(=1) and ¥ (1), which can be obtained in the same fashion as for ¥,(1) and ¥;(1); results in 2.
are given 1 (1) of Theorem 5.3.3 m [14]; and the conclusion m 3. is the same as m (111) of Theorem
533 in[14].

Remark 3.3. All the above properties can be directly obtained through elementary analysis of the
square root function.

Throughout the rest of the paper, unless otherwise specified, we make the following assumption:
Assumption 3. A/l branch points x; and y;, i=1,2.3.4, are distinct.
A random walk satisfying Assumption 3 1s called a genus 1 random walk.

Remark 3.4. This assumption is equivalent to the assumption that the Riemann surface defined by the
kernel equation has genus 1. The Riemann surface for the random walk is either genus I or genus 0. A
necessary and sufficient condition for the random walk in the quarter plane to be genus 1 is given in
Lemma 2.3.10 in [14]. Most of queueing application models are the case of genus 1. The genus 0 case
can be analyzed similarly except for the heavy-tailed case, the case where M = 0. In general, analysis
of the genus 0 case (except for the case of M =0) could be less challenging since expressions for the
unknown generating functions m(x) and m,(v) are either explicit or less complex than for the genus
I case, which can immediately lead to an analytic continuation of these unknown generating functions.
Chapter 6 of [14] is devoted to the genus 0 case.

Corollary 3.2. For a non-singular genus I random walk, if p,; is X-shaped, then all p,, p_.. pis
and p_,_, are positive.

If only one of p,, py. piy and p,_, 1s zero, then the random walk 1s non-singular having

genus 0 (Lemma 2.3.10 in [14]) and if at least two of them are zero, then the random walk is singular
(Lemma 2.3.2 in [14]).
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Corollary 3.3. For a stable random wall with M # 0,
LIf pY) is X-shaped, then p) and p~, cannot be both zero; and

2.1 p is X-shaped, then p{3 and p<5 ., cannot be both zero.
along the upper edge of the slit [x,x”] and then back to x’ along the lower edge of the slit. In this
way. we can define the following image contours:

L=Yolxx], Lo =Yolxx: (32)
M=X,[pl. M =Xo[psnl. (3.3)

respectively. Furthermore, for an arbitrary simple closed curve ¢/ . by G, we denote the interior
domain bounded by &/ and by Gy, the exterior domain.

The properties of the above image contours provided in the following lemma are important for
the interlace between the two unknown functions 7z(x) and & (y) discussed in the next section. To
state the lemma, define the following determinant:

P P P
A=|pn Po P
Py Py P

Lemma 3.3. For non-singular genus I random walk without branch points on the unit circle, we
have the following properties:

1. The curve M and M., are simple, closed and symmetrical about the real axis in C, plane.
Moreover,
(@ If A=0, then
[3.%]c Gy c G, and [x.x]c Gy,
(b)Y A<0, then

[x.%] CGMM c Gy and [x, 0] < Gy

(©)If A=0, then
[x.%]< Gy, =G and [x.%]< G,

Entirely symmetric results hold for £ and L., .
2. The branches X, and Y, have the following properties:
£o(x)

(a) Both Xo(y) and Y,(x) are conformal mappings: Gy —[x.x%] = G —[n.»];

Ay
b)) Xo(MelGuuGy,, and X,(MeGLuGl, i Symmetrically, Y,(x)e GG, and
h(x)eGou G,‘;w N

©1If Gy Gy, , then
Xo(p()=t. if t € G,
Xo(Yo()) =t if 1€ G, and Xy (Y, (G L)) = Gu.

Svmmetrically, if Gy G,;m, then
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WX =tifteG;,
YL(Xo) =1, ift € G and Yo (Xo(Gp)) = Gy,

Proof. A proof of the lemma can be found in Theorem 5.3.3 (i) and Corollary 5.3.5 in [14]. Parallel
results when 1. is a branch point (or both 1 and -1 are branch points) can be found in Lemma 2.3.6,
Lemma 2.3.9 and Lemma 2.3.10 of [14].

Remark 3.5. Results in this lemma can also be directly proved through elementary analysis without
using advanced mathematical concepts used in [14].

4. Asymptotic Analysis of the Two Unknown Functions 7z (x) and =(v)

The key idea of the kernel method is to consider all (x.y)e B such that the right hand side of
the fundamental form is also zero. which provides a relationship between the two unknown functions
m(x) and m(y). Then. the interlace between the unknown functions (x) and m(v) plays the
key role in the asvmptotic analysis of these two functions. from which exact tail asymptotics of the
stationary distribution can be determined according to asymptotic analysis of the unknown function at
its singularities and the Tauberien-like theorem.

4.1. Tauberian-like theorems

Various approaches. say probabilistic or non-probabilistic. including analvtic or algebraic. are
available for exact geometric decay. However., asvmptotic analysis seems unavoidable for exact non-
geometric decay. A Tauberian, or Tauberian-like, theorem provides a tool of connecting the
asymptotic property at dominant singularities of an analytic function at zero and the tail property of
the sequence of coefficients in the Taylor series of the function. In our case, an unknown generating
function of a probability sequence is analytic at zero. Since these probabilities are unknown, in general,
it cannot be verified that the probability sequence is (eventual) monotone. which is arequired condition
for applving a standard Tauberian theorem. The tool used in this paper is a Tauberian-like theorem.,
which does not require this monitonicity. Instead. it imposes some extra condition on analyticity of
the unknown generating function.

Let A(z) beanalyticin |z|<R.where R is the radius of convergence of the function A(z).

We first consider a special case in which R is the only singularity on the circle of convergence.
Remark 4.1. It should be noticed that for an analytic fimction at 0, if the coefficients of the Taylor
expansion are all non-negative, then the radius R >0 of convergence is a singularity of the function
according to the well-known Pringsheim s Theorem.

Definition 4.1. (Definition VL1. in Flajolet and Sedgewick [16]) For given numbers =0 and ¢
with 0<¢ < /2, the open domain A(¢.g) is defined by

A@p,e)={zeC:|z|<l+s,z=l arg|z-1|> ¢}. 4.1

A domain is a A-domain at 1 ifitis a A(g.g) for some >0 and 0<¢<x /2. For a complex
number £ #0, a A-domain at ¢ is defined as the image ¢ - A(¢.g) of a A-domain A(d.g) at
1 under the mapping z> ¢ z. A function is called A -analytic if'it is analyvtic in some A -domain.

Remark 4.2, The region A(¢.g) is an intended disk with the radius of 1+ &. Readers may refer to

Figure VL6 in [16] for a picture of the region. Throughout the paper, without otherwise stated, the
fimit of a A -analytic function is always taken in the A -domain.

Theorem 4.1. (Tauberian-like theorem for single singularity) Ler A(z)= Zma,,z" be analytic at

0 with R the radius of convergence. Suppose that R is a singularity of A(z) on the circle of
convergence such that A(z) can be continued to a A -domain at R . If for a real number
ae{0.—-1.-2....},
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lim(1-z/R)*A(z) =g,
oy
where g is anon-zero constant, then,

g nu—lR—n,
['(ex)

a, ~

where (o) is the value of the gamma function at o .
Proof. This is a immediate consequence of Corollary VIL.1 in [16] after the transform z > Rz .

For the random walks studied in this paper, we will prove that the unknown generating function
m(x) (m(y)) has only one singularity on the circle of its convergence. except the X-shaped random
walk for which the convergent radius R and —R are the only singularities. To deal with the later
case, we introduce the following Tauberian-like theorem for the case of multiple singularities.

Theorem 4.2. (Tauberian-like theorem for multiple singularities) Lef A(z)=zﬂ:_‘0a,,z” be
analytic when |z|<R and have a finite number of singularities ,, k=1,2,....m on the circle
|z|=R of convergence. Assume that there exists a A -domain A, at 1 such that A can be
continued to intersection of the A-domains ¢, at £, k=1.2.....m:
D=5 (G- Ag).
If for each [k, there exists a real number oy & {0,-1,-2....} such that
lim(1-2/6)% A(2) = g.
s
where g, is a non-zero constant, then,
a,~ Y B
= D)
Proof. This is an immediate corollary of Theorem VI.5 in [16] for the case where o, isreal. £, =0,

-1
Sk HUA.

I'(ex)

oD =5(z)=(1-2)"% and o, =

4.2, Interlace of the two unknown functions m(x) and m(v)

The interlace of the unknown functions (x) and m(v) is a key for asvmptotic analysis of
these functions. Let

I',={xeClx|=a},
Da =1x:|x|{a}:
D, ={x:|x[=aj.

When a=1.wewrite I'=1. D=1 and D=D;.
We fist state two literature results on the continuation of the functions 7z(x) and = ().
Lemma 4.1. (Theorem 3.2.3 in [14]) For a stable non-singular random walk having genus 1, m(x)
is a meromorphic function in the complex cut plane (ff,, . Similarly, m(v) is ameromorphic finction

in the complex cut plane @y‘

This continuation result is crucial for tail asvmptotic analysis. The following argument might be
helpful to see why such a continuation exists. When the right hand side of the fundamental form is
zero, the x and vy are related. say through the function ¥,(x). Therefore, x; is the dominant
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singularity if there are no other singularities exist in (l.x;). Based on the expression for m(x)
obtained from the fundamental form, all other singularities come from the zeros of /;(x.¥;(x)) . which
are poles of 7 (x) . or the singularities of 7, (¥,(x)). A similar intuition holds for the function ().
Based on the above argument. it is reasonable to expect Lemma 4.1,

Remark 4.3. An analytic continuation can be achieved through various methods. In [14] and [18], it
was proved in terms of properties of Riemann surfaces. In [29] and [23], direct methods were used
for a convergent region. For some cases, a simple proofexists by using the property of the conformal
mapping Y, or X,. For example, for the case of M, >0 and M, <0, we know, from Lemma 3.2-

Lemma 4.2, (Lemma 2.2.1. in [14]) Assume that the random walk is ergodic with M # 0 and the
polynomial h(x,y) is irreducible. Then, there exists an ¢ =0 such that the functions m(x) and

T (v) can be analvtically continued up to the circle 1, in their respective complex plane.
Moreover, they satisfy the following equation in D], "B :
(. y)m (x) + I (e, ) (W) + T (x, ) 70,0 = 0.

Proof. The analytic continuation is a direct consequence of Lemma 4.1 and the equation is directly
from the fundamental form.

Theorem 4.3. 1. Function m(¥,(x)) is meromorphic in the cut complex plane ({:'J,. Moreover, if
Yo(x) is not a pole of m(y), then x3 is the dominant singularity of m(¥,(x)) and there exist
e=0 and 0<¢<x/2 such that
lim 7, (¥, (x)) = 7 (¥, (%)) and linl 75 (5 (X)) = 7 (% (%)),
Tty x>y
where the limit is taken over the A-domain at x;.
Similarly, m(X,(v)) is meromorphic in the cut complex plane ré,.‘Moreover, if Xo(w) isnot

a pole of m(x), then 1y, is the dominant singularity of m(X,(v)) and there exist ¢ >0 and
0<¢<nm/2 such that

}11_1,1}1 7 (Xo(¥)) = m(Xo())) and }11_1,1}1)3 m(Xo(1)) = m(Xo(33)).
where the limit is taken over the A-domain at ys.
2. In cut plane (ffx, equation
By (e, Yo () 70 (x) + A (2, X5 (x0) 782 (B (30)) + Jo (36, Yo () 700 = O,
holds except at a pole (if there is any) of m(x) or m(Y(x)). Therefore,

_ (e Yo ()7 (Y () — By (e, Yo (X)) o0
Iy (.Y, (x)) i

m(x)

except at zero of h(x.Y,(x)), or at a pole (if there is any) of m(x) or m(¥(x)).

Similarly, in the cut plane C,, equation

I(Xo (). M (Xo(3) + e (Xo (W), VI () + I (Xo (). )T = 0,

holds except at a pole (if there is any) of m(y) or m(Xy(v)). Therefore,
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—I (X (V). VI (Xo(¥)) — I Xo (V). V)0 )
e (Xo (). ) '

except at a zero of I (X,(v). v), or at a pole (if there is any) of m,(v) or m(X,(v)).

m(y) = (4.5)

Proof. We only prove the result for functions of x and the result for functions of y can be proved
in the same fashion.

1. From Lemma 3.1 and Lemma 4.1, ¥,(x) is analvtic in the cut complex plane éx and m(y)
is meromorphic in the cut complex plane ff) which implies =, (¥,(x)) is meromorphic in ({:'Jx if
Yo(x) & [35. v2]. According to Lemma 3.3-2(b). for all xeC,. ¥(x)e G, w G, and according to
Lemma 3.3-1. [, 0] < (G, qum Y. which confirms ¥,(x)€[ys.y4]. From the above, we have
m(y) is analytic at ¥,(x3). then the limits in 1. are immediate results of the analytic properties of
(J(x)).

2. Since both z(x) and m(¥,(x)) are meromorphic (proved in 1.) and ¥;(x) is analytic
(Lemma 3.1) in (I:ZX . equation (4.2) holds in the cut plane (I:ZX except at the poles of #(x) or
(Y (x)) .

Remark 4.4, Let us extend the definition of m(x) to x=x; by 7(26) = lim, ., (X) Jor x in
the cut plane. We say that x is a pole if the limit of m(x) isinfinite as x — xy in the cut plane.

According to the above interlacing property and the Tauberian-like theorem. for exact tail
asymptotics of the boundary probabilities #,, and 7, . we only need to carry out an asymptotic

analysis at the dominant singularities of the functions 7 (x) and (). respectively. There are only
two possible types of singularities, poles or branch points. We need to answer the following questions:

Q1. How many singularities on the circle of convergence (dominant singularities)?
Q2. What is the multiplicity of a pole?
Q3. Is the branch point also a pole?

For the random walk considered in this paper. we will answer all these questions. We will see
that on the convergent circle, there is only one singularity or there are exactly two singularities. For
the former. Theorem 4.1 will be applied. and for the latter. Theorem 4.2 will be applied.

4.3. Poles of m(x)

Parallel properties about poles of the function 7 (y) can be obtained in the same fashion, which
will not be detailed here.

Lemma 4.3. 1. Let xe Gy m(ﬁ)‘ ., then the possible poles of m(x) in Gy m(ﬁ)‘ are
necessarily zeros of h(x.Y,(x)), and |Y(x)|<1.

2. Let yeGrn (DY, then the possible poles of m(y) in Gy (DY are necessarily zeros of
(X, (x). v), and | Xo(») <1,

Proof: 1. When xe M, then ¥, (x)=yve[w.»]. From Lemma 3.2, for |x|=1. |¥(x)|=1. For
xe Gy, m(ﬁ)“ . it follows from the maximum modulus principle. we have |Y,(x)|£1 . Hence.
7 (Y;(x)) is analytic in GMﬁ(B)"_ From Theorem 4.3, if /(x.¥,(x)) # 0. equation (4.3) holds.
which implies that the possible poles of 7 (x) in GMm(ﬁ)“ are necessarily zeros of 7 (x.¥,(x)) .
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2. The proof is similar.

Theorem 4.4. Let x, be a pole of z(x) with the smallest modulus greater than one. Assume that

| x, |£ x5. Then, one of the follow two cases must hold:

L x, isazeroof h(x.Y,(x));

2.5 =X(x,) isazeroof (X, (¥).v) and |3, > 1.
Parallel results hold for a pole of m(y).

Proof. Suppose that x, is not a zero of /3(x.¥;(x)). According to equation (4.3) in Theorem 4.3,
x, must be a pole of 7, (¥;(x)) and | ¥, [> 1. Furthermore, by Lemma 4.3, x, € G.,. If J; is not
azeroof 7, (X,(v),v).according to equation (4.5) in Theorem 4.3. ¥, mustbe apoleof = (X,(¥)).
that is. % = X,(J5) is a pole of z(x). It follows from Lemma 4.3 that %, = X,(J,) is a zero of
h(x.Yy(x)) if X, € Gy . There are two possible cases: A>0 or A<0.If A>0,by Lemma 3.3-
I(a) and 2(c). %, € G,. In the case of A <0, according to Lemma 3.3-1(b). 1(c) and 2(b). we also
have X, € GG,,. However. this case is not possible. since otherwise according to Lemma 3.3-1 we
would have X, =x, or X, =-Xx,.both leading to a contradiction. This completes the proof.

Remark 4.5. We will show in the next subsection that a pole of m(x) with the smallest modulus in
the disk |x|< x; is real.

4.4. Zeros of h(x.Yy(x))
In this subsection, we provide properties of the zeros of the function /3(x.¥;(x)). The main result
is stated in the following theorem.

Theorem 4.5. For a non-singular rendom walk having genus 1, consider the following two possible
cases:

1. Either p,; or pfi,' is not X-shaped. In this case, either h(x.Y,(x)) has no zeros with

modulus in (1.x,], or it has only one simple zero, say x", with modulus in (1.x], and X" is positive.

2. Both p;; and pf_? are X-shaped. In this case, either h(x.Y,(x)) has no zeros with modulus

in (1.,x], or it has exact two simple zeros, namely, x" >0 (with modulus in (1.x]) and —x", both
are zeros of h(x.Y,(x)) or both are zeros of a(x)h(x.Y,(x)).

With this theorem and Theorem 4.4, we are able to apply the Tauberian-like theorem to
characterize the tail asymptotic properties for the boundary probability sequence 7, ,. To show the
above Theorem. we need the following several lemmas and two propositions. Instead of directly
considering the function fj(x)=/4(x.¥,(x)). we consider a polynomial f(x). which is essentially
the product of f(x) and f(x)=/"(x.Y,(x)):

fO)= LA,
where f(x) = a(x) fi(x). It is easy to verify, by noticing
c(x) b(x)

L(x)h(x) = a0 and IE(x)JrK(x):—a(x),

J ()= a(ob (x) = ()b ()a (x) + c(x)ai (x)

=dx* +dix’ +dxt + dox + doxX + dx + d,.
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Hence. a zero of f/(x). i =0.1. has to be a zero of f(x). and anyv zero of f(x) is either a zero of
Jo(x) orazero of j{(x) =a(x) f(x).

We can also write

J(x0)=a()[a ()R ()R, (x). (4.8)
where
R.(x)=F(x) i—"'Dl(x) 4.9)
2a(x)
with
N h(x)  b(x) 4.10
PO~ e 200 10

Remark 4.6. It can be easily seen that both  f;(x) and ﬁ (x) are analytic on the cut complex plan.
In fact, the analyticity of  fo(x) is obvious and the analyticity of [ (x) is due to the cancellation of

the zeros of a(x) and the pole of f(x).
All proofs for Lemmas 4.4-4.7 and for Proposition 4.1 and Proposition 4.2 are omitted here,
which can be found in an earlier version of this paper archived at arXiv:1505.04425.

’ Mx ! Mx
Lemma 4.4, 1. (a) Yo(l)=7 i M, <0:(b) Yl(l)=7 it M, >0;and (c) Y,(1)=Y,(1)
iy Ty
and x =1 is a branch point of Y,(x) and Y,(x) if M,=0. In this case, ¥, (1) and Y,(1) do
not exist. Parallel results hold for functions X,(y) for k =0.1.
2.If M, #0, then [(x) has at least one non-unit zero in [x,.x;| and I is a simple zero of
Jf(x). Parallel results holds for the case of M, #0.
Lemmad.5. 1. Let z beabranchpointof Y,(x).If f(z)=0, then z cannot be a repeated root
of f(x)=0.
2. [(x) (therefore both f,(x) and ;? (x)) has (have) no zeros on the ciits, except possibly at a
branch point. More specifically, f(x)<0 if a(x)<0 and [f(x)}=0 if a(x)>0.
3. fo(x) and f(x) have no common zeros except possibly at a branch point or at zero.

4. Consider the random walk in Theorem 4.5-1. If fy(x) has a zero in |—x;.—1), then f(x)
has an additional (different) zero in [—x;.—1).

3. For the random walk in Theorem 4.5-1, if | x|e (1.x:], then |Yo(—|x)|<Yo(| x|).
Lemma 4.6. Consider the random walk in Theorem 4.5-1. If M, <0, then x=1 is the only zero of
Jo(x) =M (x.Yy(x)) on the unit circle |x[=1. If M, >0, then f(x) has no zero on unit circle
|x=1.

Remark 4.7. From the proof of Lemmna 4.6, we can see that for the random walk considered in
Theorem 4.5-2, fy(x) has no zeros with non-zero imaginary part on the unit circle.

The proof of Theorem 4.5 is based on detailed properties of the function f(x) and also the

powerful continuity argument to connect an arbitrary random walk to a simpler one. For using this
continuity argument. we consider the following special random walk.

Special Random Walk. This is the random walk for which p,; is cross-shaped (or p, ;=0
whenever |ij|=1). and p'Y, = p'Y, =0. We first prove the counterpart result to Theorem 4.5 for the
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Special Random Walk.
Proposition 4.1. For the Special Random Walk, the following results hold:

1. f(x)=0 has six real roots with exact one non-unit root in [x;.x:]. More specifically, two roots
are zero, two in [x,x], one in (—o0. x|, and one in |x,..).

2.1 fo(x) has azero, say x', in (1, x5, then x is the only zero of [,(x) with modulus in
(1, x]. Furthermore, f,(x) has no other zeros with modulus greater than 1 except possibly at
X=X

For the random walk considered in Theorem 4.5-2. we first prove the following results.

Lemma 4.7. For the random walk considered in Theorem 4.5-2 (or both p,, and p.)

shaped), f(1)= f(=1)=0, and f(x)=0 has two more real roots, say 0<xy,#=1 and —x,, and
two complex roots.

are X-

(0

Proposition 4.2. For the random walk considered in Theorem 4.5-2 (or both p,, and p;] are X-

shaped), either the two complex zeros of  f(x) are zeros of ﬁ (x)=a(x) fi(x) or they are inside the
unit circle.

Proof of Theorem 4.5

(1)

1. For the random walk considered here (either p,; or p;; isnot X-shaped). let

P=(pu-1. Pois Prois Poros Pocs Poss Povas Pors Pra)s

f4)) (D i

P = (P, plla- poi P i P
Define

A={p.p"):0<p.p) <1 and Y p,=>p) =13}
i i

For an arbitrary random walk for which either p,; or p}

is not X-shaped. let o be the
corresponding pointin 4. We assume that M, <=0 for the random walk p (and a similar proof can
be found for the case of M, >0). Let p, be an arbitrarily chosen point in 4 corresponding the
Special Random Walk. We prove the result by contradiction. Suppose otherwise that the statement
were not true. There would be three possible cases: (i) Im(x")# 0 (il) —x; < x" < -1 and (iii) there
exists x € (1.x3] with x # x" such that /f5(x)=0.

Case (i). Clearly, X is also a root of f(x)=0. Choose a simple connected path ¢ in A4 to
connect p to p such thaton ¢ (excluding p. butincluding p) M, <0. The zeros of f(x)
as a function of parameters in A are continues on ¢ . There are two possible cases: (a) the zero
function x(#) (with x,(p») = x")never passes the unit circle when ¢ travels from p to s and
(b) x (&) passes the unit circle at some point G £,

If (a) occurs. let € be the first point at which x,(6)=X,(€). where X, (€) is the zero
function with fo(p)=;_ If x is a zero of ,71 then /£, and # would have a common zero
X (6)=%(6,) at &, which contradicts Lemma 4.5-3. Hence, the only possibility is that ¥ isalso
a zero of f;. From & on. both x(¢) and X(€) should always be zeros of . since otherwise
only at a branch point a zero of f; could be switched to a zero of £ and all branch points are real,
which means that x,(¢)=X(€) is a branch point and a multiple roots. contradicting to Lemma 4.5-
1. As ¢, approaches gy, itleads to a contradiction that two zeros of f, arein (1.x].
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If (b) occurs, we can assume that when x;(#) pases the unit circle it is a zero of f based
on the proof in (a). Then, f has two zeros since | is always a zero of f independent of the
parameters (or ¢) when A, <0, which is a different zero from x;(¢). This contradicts to the fact
that 4 has only one zero at the unit circle.

Case (ii). In this case. f,(x) would have another zero in |[-x;,—1) at p according to Lemma

4.5-4. Consider the same two cases (a) and (b) as in (i). We can then follow a similar proof to show
that case (ii) is impossible.

Case (iii). A similar proof will show that the case is impossible.
2. This is a direct consequence of Lemma 4.7 and Proposition 4.2.
The following Lemma gives a necessary and sufficient condition under which

Jo(x)=Mh(x.Y,(x)) hasazeroin (l.x].
Lemma 4.8, Assume M, = 0. We have following results:

LIf f(x:)=0, f(x) hasazeroin (1.x];

2.If fo(x:) <0, fi(x) hasno zerosin (1.x;].
Proof. 1. There are two cases: M, >0 or M, <0.If M, >0, then f(1)<0, which leads to the
conclusion. If M, <0, then f(1)<0. which also leads to the conclusion since f(1)=0 and
Jo(x3)=0.

2. Again there are two cases: M, >0 or M, <0. By simple calculus. in either case. we obtain

that if f(x)=0 had arootin (1,x]. then it would have another root in (1.x;] since f(x)<0.
This contradicts to Theorem 4.5,

4.5. Zeros of (X, (V). v)
Following the same argument in the previous subsection, we have the following result:
Theorem 4.6. For a non-singular random walk having genus 1, consider the following two possible

cases:
1. Either p,, or p is not X-shaped. In this case, either h(Xy(y).y) has no zeros with

*

modulus in (1,y], or it has only one simple zero, say )",
positive.

with modulus in (1], and V" is

2. Both p,; and p,-(i-) are X-shaped. In this case, either I (X,(y). V) hasno zeros with modulus

in (1.w], orit has exact two simple zeros, namely, V' >0 (withmodulusin (1,35]) and —)", both
are zeros of g,(v) or both are zeros of g (v), where

2o (V) =h(Xo(¥).») and 2(») =h(Xi(¥).y).

From the above analysis. we know that if /3 (x.¥,(x)) has a zero in (1.x]. then such a zero is
unique. Similarly, if /»(X,(y).v) hasazeroin (l.ys].then such a zero is unique. For convenience,
we make the following convention:

Convention 1. Let xX° be the unique zero in (1.x3] ofthe function h(x.Y,(x)), if such a zero exists,
otherwise let x" =oo. Similarly Let V" be the unique zero in (1.ys] of the function hh(X,(y).y)

if such a zero exists, otherwise let V' = .

According to Theorem 4. 4. the unique polein (1.x] of z(x) iseither x".orthe image of the
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pole under ¥, isa zero of /4 (X,(v).v). Our focus in this subsection is on this special case of V.

Theorem 4.7, If the pole in (1.x] of m(x) isnof X, then, if, denoted by %, satisfies:
1.5 =X(y), where V' is the unique zero in (1.y:] of the function h(Xy(v).v);

2. % isthe only pole of m(x) with modulus in (1.x], except for the case where both p, ; and
P are X-shaped, for which —% is the other pole of m(x) with modulus in (1. 4].

Proof. 1. Let ¥ be the solution of 3" =¥(x). Then, £=foiX0(y”) or f=£liX1(y”)_ If
v eGe.then ¥=5% sothat ¥ =Y,(X,(y")). In this case. by Lemma 4.3. % <1.If y eG;. then
=% sothat v =Y,(X;(»") and % e Gyy.

2. It follows from the fact that the zero, ', of & (Xy(v).y) in (1.)5] is unique and the fact
that )" =¥, (x) has only two possible solutions X%, <1 and x. In the case where both p,, and
p} are X-shaped. —)" is the other zero of /n(Xy(»).y) with either —) =Y, (-%) or
-V =5 (-%).

Corollary 4.1. Let ¥ be asolutionof v =Y,(x). Inorder for % tobein (1.x;] weneed v €Gj.
Furthermore, we have y < ys.

Proof. The first conclusion is directly from the proof to Theorem 4.7 and the second one follows from
that fact that by Lemma 3.3-1 and Lemma 3.3-2(b). there exists no x=(l.x] such that

"=y, =Y¥,(x). Therefore, we should have ™ < 5.

Convention2. Let % =X,(y) ifthe uniquezero vy in (1. w| ofthe function h(X,(y).v) exists,
otherwise let x = o,

4.6. Asymptotics behaviour of m(x) and m(y)

In this subsection. we provide asvmptotic behaviour of two unknown functions #;(x) and
7, (v). We only provide details for 7 (x). since the behaviour for 7,(v) can be characterized in the
same fashion.

It follows from the discussion so far that:
(1) If p,, is not X-shaped. then. independent of the properties of p{} and p). there is only one
dominant singularity. which is the smallest one of x . % and x.Here x . % and x; are not
necessarily all different.

(2) If p,, is X-shaped, then both x and —x are branch points.
(a) If p{" isnot X-shaped, then 73(x.¥,(x) has either no zero or one zero x in (l.x]: and if
P} is X-shaped. then /;(x.¥,(x) has cither no zero or two zeros ¥ e (1.x;] and —x .

(b) Similar to (a), /(X,(v).v) haseitherno zeroin (1.3;] oronezero y in it. For the latter,

if p is not X-shaped, then % = X,()") is the only pole of 7 (¥,(x)) with modulus in

(1,x:]: and if p) is X-shaped. then % =X,(¥)e(l.x3] and —% = X;(-)y) are the only
two poles of 7, (¥,(x)) with modulusin (1.x].
Therefore, in case (2). we either have only one dominant singularity or exactly two dominant
singularities depending on which of x', % and x; is smallest and the property of p", k=1.2.
The theorem in this subsection provides detailed asymptotic properties at a dominant singularity
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for all possible cases. For the purpose of presenting the main theorem. we first state a fact. which
assures that no removable singularities exit in the proof to the main result (Theorem 4.8). This fact can
be justified based on literature results for the decay rate (for example, [29. 50]). For the purpose of
completeness, we provide a direct proof based on our analysis.

Lemma 4.9. Recall that 3, = Y,(x"). Both (X" . Yo(xX N (Yo (x™) + o (X Yo (X N 20 and

I (Xo(3), 30) (Xo(36)) + A (Xo (30). 30700 = 0.
Proof. We provide a proof to the first result and the second one can be proved similarly. Let
N(x) = I (x. Yo (x))7m (Yo (x)) + T (3. Yo (X)) 7o 0.

We show N(x")#0. Without loss of generality. we assume M, <0 (since we cannot have both
M.=0 and M, =0). We divide the proof into two cases according to whether or not /»(X,(v). v)
has a zero in (1. y5]. Once again, proofs to the two cases are similar, we only show N(x")=0 when
I (X,(y).v) hasazero, denoted by 3.in (1.w].

1. We first assume M, <0 . Under this condition, we can show that /(X,(v).y)=0 for
yvely.»l. and A(X(¥).»)>0. <0 and >0 when ye[p.1). (I.37) and (3] .
respectively.

If Yo(x)=>1. then h(x".%(x))=0 since both x">1 and ¥,(x)>1. It follows from
x=X(¥,(x)) for xe(l.x] that

¥ =X 0(7) # Xo(H(x7)
and then
B (X7 Yo (X)) = e (X (Vo (x7)). Yo (x7) = 0,

which implies that N(x")#0.

If Y,(x)<1.then x* =X, (¥Y(x)). Hence. I(x".Y,(x"))=h(Xo(Xo(x).Y:(x)) > 0. However,
in this case. we do not always has /2, (x". ¥,(x" )= 0. When A (x".Y,(x")) < 0. we prove N(x")#0
by contradiction. For this purpose. let us consider

r(x) = a(x)h (x. Y, (x)p (x. Y, (x)).

We can show that »(x) has at most four zeros including x=1. Let X, be its smallest zero in
(x".min(%.x)). Suppose otherwise N(x)=0, then x" is a removable pole. which implies that
m(x) is analyticin (x".min(%.x;)). Hence.

T (3, - ¥o (5, )78 (X (2, )
—h (0, . Yo (%))
Since /3y (%, . Yo(%,)) =0 and x, >1. ¥(x,) <1 Therefore. 7,(x, .Y (x;,))> 0. On the other hand,
we also have /(x,.¥(x%,))>0 since X <X, <% . This would yield 7z(x,) <0, which is a

contradiction.

2. We then assume M, > 0. In this case, /(X (¥).»)=0 for yve(l.y). If ¥(x)=1.in the
same fashion as the above, we can show N(x)=0.If ¥,(x) <1, thenit follows from Y,(x")e[12.1)
that 7(x". ¥ (x)) = (X, (Yo(x)). ¥, (x)) < 0, which implies N(x")#0.

= 0.

frl(-’%)=

Remark 4.8. When we deal with a specific model, the non-zero conditions are usually much easier to
verify since the number of possible cases is significantly reduced.
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Let x4, beadominantsingularity of z(x). Clearly, |xpm|= X . |Xim =% O | X [= x5
The following Theorem shows the behaviour of 7 (x) at xg,. Recall again that j; = Y (x).
Theorem 4.8. For the function m(x), a total of four tvpes of asymptotics exist as x approaches to

a dominant singularity of m(x), based on the detailed property of the dominant singularity.

Case 1: If | X | X" <min{xi.x}, or |Xp, =5 <min{x".x}, or | X, =X =% = x5, then
) x
lim |1- 7(x) = o1 (Xiom )
L dom Xitom

where ¢y, (X4,) 1S @ non-zero constant.

Case 2:If | Xpop |5 X =% <8 0r |Xpon|= % =2 <X, then

lim v l - X ‘( xdomﬁl(x) = C(F,Z(xa'om)s

—»1
Ydom

where ¢2(Xgm) 18 a non-zero constant.

Case 3: If | X4, |= 2 <min{X.x"}, then

lim ‘\j I-x/ Xiom ﬂ.i (x) = 00.3(xdom )9

X=X dom

where ¢;:(X4om) 1S a non-zero constant.

Case 4: If | Xy |=X =% <X, then

Xidom

2
lim (l_ a ] (X)) = Coa(Xaom )

= Xdom

where ¢, (X ) IS a non-zero constant.

Remark 4.9, All the non-zero constant ¢,; for k=1.2.3.4 can be explicitly expressed. We omit

the detailed expressions here and also the proof to the theorem since they are routine and tedious.
Readers may refer to [40] for similar proofs and to arXiv:1505.04425 for a proof of the theorem. We
also emphasize here that according to Lemma 4.9, the imposed non-zero conditions to Theorem 4.8 in
an earlier version of this paper (arXiv:1505.04425) can be removed and therefore.

Remark 4.10. It should be noted that the above theorem provides the asvmptotic behaviour at a
dominant singularity, either positive or negative.

Remark 4.11. The requirement of Y,(%) =1 in the definition of % is important. It is possible that
there exists some X;, which satisfies (XY, (). Y (x)=0 but ¥, (x)<1.Inthis case, % cannot
be a singular point since Y,(x) can be continued to %;.

5. Tail Asymptotics of Boundary Probabilities z,, and =,

Since #(x) and m(y) are symmetric. propertics for m(x) can be easily translated to the
counterpart properties for 7 (v) . Therefore, tail asymptotics for the boundary probabilities 7z, can

be directly obtained by symmetry.
The exact tail asymptotics of the boundary probabilities ,, is a direct consequence of Theorem

4.8 and a Tauberian-like theorem applied to the function = (x). Specifically. if z(x) has only one
dominant singularity, then Theorem 4.1 is applied: and if 7 (x) has two dominant singularity, then
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Theorem 4.2 is applied.

The following theorem shows that there are four types of exact tail asymptotics. for large » .
together with a possible periodic property if 7 (x) has two dominant singularities that have the same
asvmptotic property.

In the theorem, let xg, be the positive dominant singularity of 7 (x). Consider the following
four cases regarding which of x. % and x willbe x,,,:

Case 1: X, =min{x %} <x with ¥ #3.0r Xp =5 =X =Xx3;
Case2: X, =X =min{x .5} with x" =%

Case 3: x5 =Xy, <min{x ,%}:

Cased: X=X =5 <X3.

Theorem 5.1. Consider the stable non-singular genus I random walk. Corresponding to the above
Jour cases, we have the following tail asymptotic properties for the boundary probabilities r,, for

large n . In all cases, c,;(x4,) (1<i<4)are given in Theoremn 4.8.
1. If p,, isnot X-shaped, then there are four tvpes of exact tail asymptotics:

Case 1: (Exact geometric decay)

l 11
o~ Co1(Xaom ) ( ] N (3.1)
Xidom

Case 2: (Geometric decay multiplied by a factor of n'*)

=1
Coo(Xaom) 12 1 }
ﬂ-ﬂ v = n ’ 5 ‘2

’ J; ( Xidom ( )

Case 3: (Geometric decay multiplied by a factor of n>")

C0,3 ( xa’om ) —3/2

n—1
1
Ty ~ Np n (Y ] : (5.3)
“vdom

Case 4: (Geometric decay multiplied by a factor of n )

-1
1 <
Mo ™ C(Lfi(xa’mrr )n( - ] . (3 4)

A't:ft.‘rm
2. If p.; is X-shaped, but both p,-(_? and pfi-) are not X-shaped, we then have the following exact
tail asymptotic properties:
Case 1: (Exact geometric decay) It is given by (5.1);

~1/2

Case 2: (Geometric decay multiplied by a factor of n ") It is given by (5.2);

Case 3: (Geometric decay multiplied by a factor of n>")

- |:C(L3(xa‘mrr) +(-1 )"_lccr.s(—xdm)] = Y .
n0 ™ -
’ Jr

Case 4: (Geometric decay multiplied by a factor of n ) It is given by (5.4);

(5.3)

Xidom
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If p., and pi}] are X-shaped, but p_] is not, we then have the following exact tail asymptotic
properties:

Case 1: (Exact geomelric decay) When x" =X, it is given by (5.1); when Xy, =X <X, il is given
by

;r,,,o~[co,,(xbm)+(—l)f*-lco,,(—xm)]( ! ] ; (5.6)

. xa‘om

—1/2

Case 2: (Geometric decay multiplied by a factor of n '~ ) When x" > %, it is given by (5.2); when

Xjom =X <X, il is given by

[C(P.Z(xdom) + (—1)n_] c(._g(—xdm )] i [ l ']‘:—l ‘
Ty ™ " .
, ,J; -

Case 3: (Geometric decay multiplied by a factor of n>7) It is given by (5.5).

5.7

Xidom |

Case 4: (Geometric decay multiplied by a factor of n ) It is given by (5.4).
4. If p,; and p7) are X-shaped, but p.} is not, then it is the symmetric case to 3. All expression

in 3 are valid after switching x and %.

Ifall p.,, p.} and p) are X-shaped, we then have the following exact tail asymptotic

properties:

Case 1: (Exact geometric decay) When x <X, it is given by (5.6); when x =%, it is also given
by (5.6) by replacing the dominant singularity x by 3.

Case 2: (Geometric decay multiplied by a factor of n'"*) When x <3, it is given by (5.7); when
X = %, itis also given by (5.7) by replacing the dominant singularity x by 3.

Case 3: (Geometric decay multiplied by a factor of n>") It is given by (5.5).

Case 4: (Geometric decay multiplied by a factor of n ) It is given by

-1
! ) . (5.8)

Xiom .

To ™[ Coa Ceson) + (=1 o (=) | [

Proof. 1. Since p,;, is not X-shaped. all —x;. —x  and —-% are not dominant singularities
according to Corollary 3.1, Theorem 4.5 and Theorem 4.6. Therefore. there is only one dominant
singularity for m(x). The tail asymptotic properties of 7, follow from Theorem 4.8 and the direct
application of the Tauberian-like theorem (Theorem 4.1).

2. We only provide a proof to the cases. which are not identical to thatin 1.

Case 1. For the case that x, =X =x" =x;. we notice that —x; is also a dominant singularity
(Corollary 3.1). In this case. the Tauberian-like theorem (Theorem 4.2) is used to have a tail asvmptotic
expression consisting of two terms. one. corresponding to the positive dominant singularity. with the
exact geometric decay rate and the other, corresponding to the negative dominant singularity. with the
geometric decay rate multiplied by a factor of 7. Therefore. the term with the geometric decay rate
is the dominant (decay slower) term leading to the same tail asymptotic property given in (5.1).

Case 2. Similar to Case I, —x; is also a dominant singularity. The Tauberian-like theorem (Theorem
4.2) leads to a tail asymptotic expression consisting of two terms, one with the geometric rate
multiplied by a factor of »"* (dominant term) and the other by 7 *.
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Case 3. In this case. both x3 and —x; are dominant singularities having the same asvmptotic
property according to Theorem 4.8. The tail asvmptotic expression follows from the application of the
Tauberian-like theorem (Theorem 4.2).

3. In this case. —x; and —x are singularitics. but —% is not. We only provide a proof to the
cases. which are not identical to that in 1 or in 2.
Case 1. For the case when x =i = x;. there are two dominant singularities. The Tauberian-like
theorem (Theorem 4.2) leads to a tail asymptotic expression consisting of two terms. one
(corresponding to the positive singularity) with a geometric decay rate. and the other (corresponding

to the negative singularity) with the same geometric decay rate multiplied by a factor of # "% that is
dominated by the geometric decay.

When x" <3#%.both x and —x are dominant singularities with the same asymptotic property.
which leads to the tail asymptotic expression by using Theorem 4.2.

Case 2. For case when x; =x . there are two dominant singularities having the same asymptotic
property. The tail asymptotic expression follows from Theorem 4.2.
Case 4. In this case. there are two dominant singularities. but the contribution from the positive

dominant singularity dominates that from the negative dominant singularity. The tail asymptotic
expression follows from Theorem 4.2.

4. The symmetric case to 3.

5. In this case, all —x" . —x and —x; are singularitics. We only provide a proof to the cases.
which are not considered in the above.

Case 1. The only new situation here is the case when x =x = x;. In this case. we have the same
asymptotic property at both dominant singularities, which leads to (5.6).

Case 4. In this case. we have the same asymptotic property at both dominant singularities. which leads
to (5.8).

From the above theorem, it is clear that if there is only one dominant singularity, then the
boundary probabilities z,, have the following four types of astymptotics: 1. exact geometric; 2.
geometric multiplied by a factor of n " : 3. geometric multiplied by a factor of 77 and 4. geometric
multiplied by a factor of » . If there are two dominant singularities. but with different asymptotic
properties. 7,, alsohas one of the above four types of tail asymptotic properties. Finally, if we have
the same asymptotic property at both dominant singularities, then z,, reveals a periodic property
with the above four types of tail asymptotics. which is a new discovery.

6. Tail Asymptotics of the Marginal Distributions

In the previous section. we have seen that the asvmptotic behaviour of the function m(x)
(m(y)) at its dominant singularity or singularities determines the tail asvmptotic property of the
boundary probabilities #,, (7, ). According the the fundamental form of the random walk, it,
together with the property of the kernel function /(x. ). also determines the tail asymptotic property

of the marginal distribution 7.’ =Z}ﬁ,,, s and 77 =" 7,).

In this section, we provide properties for the exact tail asymptotics of the marginal distribution
7" . The exact tail asymptotics of 7,” can be easily obtained by symmetry. First, based on the
fundamental form. we have
_ Im(xe. )m(x) + ha(x, VI (V) + ho(x, V) oo

~h(x,y)

z(x.y)

and therefore,
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oy = IEEDTE) + b (e D) + oD
’ —h(x.1)
_ mx Dm(x) + (e, D (1) + Ao (x, D7
—a(D[x =X, (D][x - X, (1)]

If M,=0.then X, (1)=1. which implies that the denominator of the expression for x(x.1)

does not have any zero outside the unit circle. In this case. z.” has the same tail asymptotics as Tpp -

The only difference is the expression for the coefficient. which can be obtained from straight forward
calculations.

If M,<0.then Xy;(1)=1 and X,(1)=1.If p;; is not X-shaped. the analysis is so-called
standard. If p,, is X-shaped. then there are four subcases based on if p") is X-shaped or not. For
these cases, detailed analysis varies, but similar. Instead of providing detailed analysis here, which is
similar to that in previous sections and can be found in arXiv:1505.04425, we provide a summary of

tail asymptotic properties for the marginal distribution 7, for all possible cases. For this purpose,
let Xz, be the positive dominant singularity of 7z(x.1). Note that X;(1) = xi. The following are the
all possible cases according to which of ¥ XL oxoand X(1) i X

Case A. x;, =min{%, x. x5} < X (1);

Case B. Xz, = Xi(1) <min{X.x", x3}:
Case C. xz, = Xi(1)=x <min{X.x};
CaseD. x,, =X, (1)=x <x";

CaseE. x,, = X,(1)=x=x".

Remarlk 6.1. The cases here are different from the cases classified in the previous section and the next
section.

The exact tail asymptotic properties are obtained according to the expression of x(x.1) and the
Taubarian-like theorem.

Theorem 6.1. For the stable non-singular genus 1 random walk, the exact tail asymptotic properties

for the marginal distribution m.”, as n is large, are summarized as:

Case A: This case includes Cases 1-4 in the previous section. ., has the same types of asympiotic
properties as m,, given in Theorem 3.1, respectively, with possible different expressions for the
coefficients.

Case B: 7" has an exact geometric decay.

Case C: 7" has an exact geomelric decay if Y,(x)=1 and a geometric decay multiplied by a

Jactor of n if Y(x") =1, respectively.
Case D: 71" has an exact geometric decay.

Case E: 7" has an exact geometric decay.

7. Tail Asymptotics for Joint Probabilities

In the previous sections. we have seen how we can derive exact tail asvmptotic properties for the
boundary probabilities and for the marginal distributions based on the asymptotic property of 7 (x)
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(m(y)) and the kernel function. However, the exact tail asymptotic behaviour for joint probabilities

cannot be obtained directly from them. Further tools are needed for this purpose. Our goal here is to
characterize the exact tail asymptotics for 7, ;, foreachfixed j and =, foreach fixed /. Dueto

the svmmetry. in this section. we provide details only for the former.
The relevant balance equations of the random walk are given by

() — D (2)
(1= pho) oo = Poioio + Po 1os + Poi17ii.
l (1} — (1) {2)
(1= poa)mo = profoe + Pliofen + Po oy + Py + Po178,.
(1) _ (1) (1) .
(= )0 = Plofie + Plio@aoe + Poaag + P + Py, 122,
(1= Poo) 7 ; = Pt + P + PTG + Profin; + Pl
+ P+ PoaTG g+ P . ] 22
Let
of) of)
_ -1 . _ 1
P, (=D j20. (=D P20
=1 =

From the above definition, it is clear that ¢,(x)=m(x) and y(v)=m(y). From the relevant
balance equations. we obtain

()@ (x) + b (X)@Po(x) = ay(x). (7.1
c(X)P2(x) + b ()@ (x) + a (xX)po (x) = @ (x), (7.2)
(X))@, (x) +b(x)p,(x) + a(x)p(x) = aj(x), j=2, (7.3)
or
@ya(x) = ~b(x)p,(x) - a(x)p,(x) +a;(x) o, 7.4)
c(x)
where

ay(x) = =6 (%), — by () 700
a; (x) = =G (xX) 72 — by (X)) — ap(X) 7.
ai(x) == (X)) — D (), — (XD 0. J= 2.
First, we can prove the fact that a zero of c¢(x) is not a pole of ¢,(x) forall j=0 (details
are omitted here, but can be found in arXiv:1505.04425). Therefore ¢@;(x) has the same singularities

as @, (x). Based on this result. results obtained in previous sections. and the following lemma. we can
prove our main result.

Lemma 7.1, If min{x" .5} > x;, then

X '
llm ]-_ %(x) =C3,,.r’(xdan ):
X o u Xedorn

where ¢;(xg,,) is given in Theorem 4.8 and

CB,J'H (xdom) = [AS(xdom) + BB(xdom )}][ ] s j = 09 (7'5)

Y 1 (xa‘om )
with
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C3p (Xtom YD1 (X))
(Xaom)
=1y (Xgom» Yo (Xiom ))C3.0(Xtom )
C(Xiom) I

A3 ( KXiom ) = (7‘6)

BS(xdom) = (77)

Once again, we omit the proof here, which can be found in arXiv:1505.04425. We are now ready
to prove the main theorem of this section, in which

—Cip ( Xdom )bl (xa'om )
c ( Xdom )

Al(xa‘om) = _Bl(xdom) + (78)

_ [ I o Yo (kton ) ~ 5u(Xm)
a(xdom)[Yl(xdom) _Yo(xebm)]YO(xdom) c(xn’om)

]C‘l.o(xdm).-

_ C2,0( Xdom )bl ( Xdom )

AZ (x om) =
b C(xdom)
and A4 (x., ) is given in (7.6),

lbl (xdom )C0,4 ( Xdom )

AsXiom) == o)
dom

_kl (xa‘om s YO (xa‘om ))Cl 0 (xa‘om )
a(xd‘om )[Yl (xdom) _YO(xdom )]Yo(xdom) ’

_CZ,O (xdom )kl (xcfom 5 YO (xcfom ))
aYO (xa'om )2

Bl (xa‘om) =

B (xgm) =

]

and Bi(xy,,) isgivenin (7.7).

Theorem 7.1. Consider the stable non-singular genus 1 random walk. Corresponding o the four case,
we then have the following tail asymptotic properties for the joint probabilities r, ; for large n.

L If p.; is not X-shaped, then there are four types of exact tail asympiotics:

Case 1: (Exact geometric decay)

| = ) 1 -1 1 n-1
n.j ~ A o + B am - : = l’
5 [ o ){_Y1(xdom)_} o ){ YO(X‘?""’)J ][dem ) '

Case 2: (Geometric decay multiplied by a factor of n"?)

- -1 -1

As o) + (F = 1) B2 (%41 1 e 1 .
o~ = L] e
i T [Yl(xdom)] " [ ) J>

Case 3: (Geometric decay multiplied by a factor of n>")

— AS(xdom) + (.} - ]-)-33(xa‘orrr )] [ 1 ]j_] n—3.-'2 [ 1 Jn_] . } > l‘

Xedom

T, —_—
! ‘\/; Yl(xdom)

Case 4: (Geometric decay multiplied by a factor of n )

Xdom

1 1 1 n-1
‘T’*J N[Ad(xJM){_Yl(xdm)J ]n[xdom ) - =
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122

2.1f p., isX-shaped, but both p\) and p) arenot X-shaped, we then have the following exact
tail asymptotic properties:

Case 1: (Exact geometric decay) It is given by (7.13);

Case 2: (Geometric decay multiplied by a factor of n"?) It is given by (7.14);

—3/2

Case 3: (Geometric decay multiplied by a factor of n ") It is given by
_qyrtd _ -1 -1
70, ~ A (Xg0) + (=1 A (=X 400)] 1 a2 ( 1 ] =1 (7.17)
‘J; Y 1 (xdom ) xdom

Case 4: (Geometric decay multiplied by a factor of n ) It is given by (7.16).

3. If p; and p,-(_? are X-shaped, but p,-(f,-)

asvimplolic properties:

is not, we then have the following exact tail

Case 1: (Exact geometric decay) When 5% <x', it is given by (7.13); when % =X = X3, il is also
given by (7.13); when x" <3x, it is given by

YI (xdom ) Xidom

Ty ™~ I:Al(xdom) + (_IYHJAI(_xdom)]( ! ] ( ! ] » } = l‘ (718)

Case 2: (Geometric decay multiplied by a factor of 1 "*) When x> %, itis given by (7.14); when
X' <%, itis given by

A o)+ D ) (1 Y (Y

ni ™ . j=1L 7.19
. Iz [Yl(xm)] ! ( ) ! 7
32

Case 3: (Geometric decay multiplied by a factor of n~

-1 e
A D Al 1Y n_m( 1 ] e
" '\/; Yl(&fom) ’ -

Case 4: (Geometric decay multiplied by a factor of n ) It is given by (7.16).

ngom .

) It is given by

Kidom

4. If p; and p,-(_zj) are X-shaped, but p,-(_?

is not, then it is the symmetric case to 3. All
expression in 3. are valid afier switching x* and Xx.
5.0fall p,, p and p are X-shaped, we then have the following exact tail asymplotic
properties:
Case 1: (Exact geometric decay) When x" <3, itis given by (7.18); when x* > X, it is also given
by (7.18) by replacing the dominant singularity x by %

Case 2: (Geomelric decay multiplied by a factor of n"*

) When x" <x,itisgivenby (7.19); when
X =%, it is also given by (7.19) by replacing the dominant singularity x by %;
Case 3: (Geometric decay multiplied by a factor of 1" ) It is given by (7.17);

Case 4: (Geometric decay multiplied by a factor of n ) It is given by

;r”’j ~ |:A4(xd°m) + (_]‘)“+jA4(_xa‘oﬂf):| . n l > j =1.
. X '

Yl (xrfom ) Cao
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Proof. 1.

s }po(x) = Cp1(X40m ) - By the induction and

Kdom

Case 1: It follows from Section 4.6 that [im... dm(l -

equations (7.1)—(7.3). lilnx_’xa‘om(l_ .x

Kidosm

]G’;(x) = ¢y (Xm) With

Cl .l(xa‘om )C(xdom) + Cl,O(xdom )bl (xdom) = 0.‘
Cl,2 (xdom )C(xdom ) + Cl,l (xn’om )b(xdom ) + CI,O(xdom )al (xdom ) = Or
Cl,_,r+1(xdom)c(xdom) + Cl,_.r(xdom)b(xdom) + Cl,_j—l (xdom)a(xebm) = 09 J' = 2‘

Since ¢ (Xww). j =0, satisfies the second order recursive relation above, it takes the form of

i i
1 1
+ {47/ =A “Vaom +‘B “Vaom - '20'
Crm (iom) = 4% )[Y.(xdo,,,)] (e )[Yo<xm)_] /

To determine A, = A,(x,,,) and B, = B,(x,,,) . we use the initial equations:

(A + B)(Xtom) + €10 Ktom Dy (o) = 0. (7.20)

1 1 _
|:A1 [ AT } + B, [Yo(ngom) ]:|C(xdom) + (A + B)b(x40m) + CI,O(xebm)al(xdm) 0. (7-21)

Multiplying both sides of (7.21) by ¥,(xs,) . adding the resulting one to (7.20), and taking
intoaccount (X0 VY5 o) + Pt )Y o (Xt ) + (Xo) = 0 .
Iy (X gom - Yo (Ko )) = @3 (Ko Yo (Ko ) + D1 (Xoy) AN (X ) = Yo (X0 YY1 (X JO(Xg ) ViEld:

(A + B)e(Xgom) + €10(Xgom )D1 (X0 ) = 0.
Yo (Xgom)
Yi(Xsom)
which gives (7.11) and (7.8). So. B (x;,)=0 if x,,=x" and B,(x,)#0 if x,, =%. By the
Tauberian-like theorem. we obtain (7.13).
Case 2: Similar to that for 1-Case 1. From the proof, we have (7.12) and (7.9).
Case 3: Write

AI c(xdom) + Blc(xdom) + (Al + Bl )b(xdom)yﬂ(xdom) + cl,O(xdom)al(x:fom)yo(xdom) = 0-:

o

. - N . xY
P ()= N+ D70, X =D (n+ DX 7,0 [ZJ :
=il

=0
According Lemma 7.1 and the Tauberian-like theorem. we have

e ()
(6 V2,
b4

(F’I + l)x; ;rn+2,_,r ~

which 1s equivalent to (7.15).
Case 4: The results can be proved in the same fashion as in Case 1 and Case 2.

The proofs of the other cases are omitted due to the similarity to 1. and Theorem 5.1.

8. Examples and Concluding Remarks

In this paper, for a non-singular genus 1 random walk, we proposed a kernel method to study the
exact tail asymptotic behaviour of the joint stationary probabilities along a coordinate direction, when
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the value of the other coordinate is fixed, and also the exact tail asymptotic behaviour for the two
marginal distributions. This work serves for multifold purposes:

1. Proposing an alternative method for exact tail asymptotic properties of random walks in the
quarter plane. and also random walks in the half plane. Several applications have become available
(e.g.. [40. 36,10, 9,57, 58, 62]). demonstrating the effectiveness of this method.

2. Discovering a new periodic behaviour in tail asymptotics, which has not been reported before.

3. Completing previous studies (using a different method) on exact tail asymptotic properties
reported in [50] by:

(a) Addressing the case left unsolved (see Remark 4.8 in [50]):
(b) Providing the missing type (Case 4 in Theorem 5.1) for the tail asymptoticproperty.

It should be mentioned here that an early version (which contained all key results in the current
version) of this paper was completed in 2011, and we also noticed that item 3 has been addressed in
[30], an independent work from our studies (which completes in the same year, 2011). In addition, in
the final version of their studies, the authors included our findings of the new periodic tail behaviour,
reported n this paper, and claimed that a case 1s missing from our study that was added to their paper
for the completion. However, this case does not exist for a stable random walk (see Corollary 3.3).
and our study here is complete.

4. Extending the difference equation method for exact tail asymptotic properties for joint
probabilities along a coordinate direction (in addition to the boundary probabilities). This result is not
a direct result from the kernel method.

For exact tail asymptotics, a total of four different types exist. The key idea of this kernel method
1s simple and the use of the Taubenan-like theorem greatly simplifies the analysis, which, unlike in
the situation when a standard Tauberian theorem 1s used, 1s also rigorous. Under the assumption that
there 1s only one dominant singularity, this method provides a straightforward routine analysis for the
exact tail asymptotic behaviour. However, without this assumption, the analysis is not simple. at least
to our best effort. for telling how many dominant singularities and when a pole is simple. It is also
challenging to characterize the exact tail asymptotic along a coordinate direction when the value of
the other coordinate 1s not zero, since it is not a direct consequence of the kernel method.

This kemnel method can also be used for characterizing the exact tail asymptotics for the non-
singular genus 0 case and the singular random walks (see Li, Tavakoli and Zhao [36]). With the
detailed analysis provided in this paper., we expect further research in applying this kernel method to
more general models.

The complete characterization of the exact tail asymptotic behaviour provided in this paper does
not necessarily imply that for any specific model, a characterization explicitly in terms of the system
parameters exists. However, we are confident that for any specific model. if using a different method
could lead to a such characterization, in terms of system parameters, then it can be done using the
kernel method. Finally, we mention two examples, which have been analyzed by using the proposed
kernel method.

Example 1. A generalized two-demand model was considered in Li and Zhao [40] using the same idea
proposed in this paper. For this model, let A and 4 (k& =1.2) be the Poisson arrival rate with two
demands and the arrival rate of the two dedicated Poisson arrivals, respectively. Furthermore, let g
(k=1,2) be the exponential service rates of the two independent parallel servers. For a detailed
description of the model, one may refer to [40]. For this model, the three regions. on which the joint
probabilities along a coordinate direction, say queue 1, have an exact geometric decay. a geometric
decay multiplied by a factor n "> and a geometric decay multiplied by a factor »** are extremely

2 {;u:—/lz,(b) W= ﬂ:;ﬁz

simple. which are: (a) : ;and (¢) A
A+ A A A+ A4 A A+ A

, respectively.

Example 2. Consider the simple random walk, or a random walk for which p,; and both p¥
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(k=1,2) are cross-shaped. We then can follow the general results obtained in this paper to have
refined properties. For example, consider the case of M, >0 and M, <0 and assume that the

system is stable. Then, along the x -direction, 7, ; has three types exact asymptotics in the following
respective regions:
1. Exact geometric:

A3 , 1) (1) (1)

Poi + PoXa = Paol
X3 -1

2. Geometric with a factor »n'”:

X X ) 4l (1}

oy T PoXs = Pl
-1 i

3. Geometric with a factor »n 7

X3 Po —1{p) + plxs < ps.
x;—l_v Pa | ’

When M, <0 and M. <0, this example also reveals the fourth type of exact tail asymptotic

property, or a geometric decay multiplied by the factor n along the x -coordinate direction in the
region defined by the following conditions:

. Jﬁ —1|pl + pils = p 8.1)
x—1 P

2 1{ fras 1}&53 + = . ®2)
A", 3) =0, &

o)
P _ P .
o '_1] ;.O i 8.4

Po o

*_ (2) (2) o oy i) =
(x : I)Po:_—;IPI,OJFP(lf;Po,—I EPENC. 1)[,0(—1;,0” pox] 8.5)
(" =D psipo+ Propos Poix

Here, x"e(1.x;] and y" € (1,ys] are the zero A(x.Y;(x)) and /n(X,(y).v). respectively, whose
existence is guaranteed by Lemma 4.8 under conditions (8.1) and (8.2); 3, = ¥,(x") and in this case
wehave 7, =)y ;and % =X, (¥ (x)).

It 1s not very difficult to see this is not an empty region. The last thing which we need to check 1s
the coefficient

1 (Ko - VO (R V() + 1y (5. y“)]fro,o] #0

I . g o~ - 8.6
x“_hl(xa‘omr J’ )Kb(xa‘om)h2 (XO (J” )r J’ ) ( )

00,4 (xdom ) =

Iy (X V() + iy (K. J’*)ﬁo,o #0,
which is true since /1, (X4,. V') =2 (X1 (V). V) = (X (). ) =0,
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Before we conclude this paper, it is believed that the following concluding remarks are valuable:
There is no trivial method for exact tail asymptotics for a two-dimensional problem. It is also true even
for the rough decay. To the best of our knowledge. among all other available methods. only the method
by Mivazawa (sce [50] and [30]) and the kernel method proposed in this paper are systematic studies
of exact tail asymptotics for the two-dimensional random walks in the quarter plane. The method
proposed by Mivazawa has a geometric interpretation in the analysis. while the kernel method is purely
analytic. The former method separate the analysis into two steps: finding the rough decay rate is the
first step, and obtaining the exact tail asymptotic properties is the next (which follows the same idea,
using Tauberian-like theorems as in this paper). The kernel method combines the above two steps
together. Therefore. the focus looks simpler, which can be very important when the method is extended
for more generalized problems (say random walks in the half plane).

As remarked by the authors of the book [14] (see Chapter 7). the principle of the kernel method
is also valid for more general models (including higher-dimensional random walks). However., much
more efforts are needed for technical details for higher-dimensional cases. For example, in general the
analytic continuation of the unknown generating functions is still unaddressed for & —dimensional
cases. where 4 >2.
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