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Abstract: In this paper we introduce a queueing system manned by a single server who serves multiple 
class )(n of customers. The customers arrive according to a Markovian arrival process and form a single 
queue. At the time when taken for service the customer of class i  may be taken for service of class j
(ambiguity in the determination of class of required service) with probability njpij ≤≤1  , . Service time 

in class i  is of phase type distributed with representation ),( )()( i
i

i
i Tγ of order nim i

i ≤≤1  ,)( . If a customer 
of class i  is taken for class j  service initially then on completion of service there he is taken to class 
with probability .1  ,)( nki

jk ≤≤η  A timer starts at the beginning of service of a customer. If the timer 
realizes before the customer is identified of the required (correct) service, this customer is instantly sent 
out of the system without getting correct service. On the other hand if the timer does not realize before 
identification of required service, then the customer is taken for service in that class and completes 
service successfully. In the case when the customer is provided the required class of service right from 
the very beginning, he leaves the system after completing this service. In the last case timer plays no 
role in the service time of such customers. In the case of such customers no ambiguity arises on the type 
(class) of service required. We analyze the above system to derive the expected time a customer spends 
with the server. Then we use it to derive the stability condition and the resulting system state 
distribution. Useful performance indices are computed. Numerical illustrations are provided to have a 
glimpse of the system performances. Some examples from real life situation are cited, as motivation for 
the study of the above mentioned model. Case of arbitrarily distributed service time is also considered. 
An application in telecommunication is indicated.  
 
Keywords: Ambiguity on class determination, desired/undesired services, Markovian arrival process, 
multi-class queue, random clock (timer). 
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1.  Introduction 
So far queueing theory literature concentrated on single / multi-server problems with the service 

requirement of customers exactly known. In most of the cases it was the same type of service that was 
rendered and so uncertainty did not arise (see for example, Gross and Harris [5]). Even when cases of 
different types of services were considered the exact requirement of type of service was assumed known. 
In multi - server cases, the servers may serve at different rates and hence only independence of service 
time duration, but not identical service distributions, were assumed. 

For the classical multi-class queues one may refer to Atar et al. [1], Harrison and Zeevi [6], Kelly 
[7], Righter [11], and Sharif et al. [12]. None of these discuss ambiguity in determination of class of 
service to be offered. In retrial queueing context, Avarchenkov et al. [2] and Falin [4] consider multi- 
class customers. These authors assume that the exact class to which each customer belongs, is known to 
the customer as well as service system and hence no ambiguity on the nature of service arose. 

Ambiguity in determination of service needed of a customer in a multi-class queue (whether single 
server or multi server / single channel or distinct lines) is quite common. However, that ambiguity has 
not so far been discussed in literature. There are several real life situations where neither the customer(s) 
nor the server(s) would be aware of the exact requirement of service the customer needs. This leads 
either the customer being served rendered handicaped (incapable of receiving the right service required) 
since undesired service was already provided for too long a time or the customer initially receives 
undesired service and after a while moves to required service, thus escapes getting incapacitated. In this 
paper we consider a single server queue providing n  distinct services with uncertainty in the type of 
service required by the multi - class customers. 

We can have examples from medical services and also from repair facilities for the model under 
consideration. The patients queueing up at a physician’s clinic is an apt situation of the model. The 
patient(s) tells the physician of the symptoms and the latter makes certain inferences. However, visible 
symptoms (or even certain tests) may not reveal the ailment, with the result that a wrong diagnosis is 
arrived at. The resulting course of medication could harm the patient beyond repair and the patient may 
turn unfit for any further medication. On the other hand, even when a wrong diagnosis is made and the 
patient is accordingly provided medication, at a later stage the correct diagnosis could be arrived, before 
the patient becomes unfit for the right medication. This case leads to the patient getting cured 
completely. In the other extreme case, the patient is diagnosed correctly at the very beginning of service 
and so get right medication. 

Another example arises in telecommunication (protocol IEEE 802.11DCF). When a massage 
originates, the server could be idle and hence could be transmitted immediately. On the other hand if the 
server is busy at the time when the message originates, then it goes through a sequence of contention 
windows. This part we call the undesirable service. If the process of going through contention windows 
does not end up with meeting the server idle before the timer expires, then the message losses its 
significance and hence discarded. This example is explained in detail in Section 5 (special case). 

Now we describe the occurrence of ambiguity into our service system. Assume that n  distinct 
services are offered by the server. Neither the server nor the customers are exactly aware of the service 
requirement of the latter. Introduce the probability vector ),...,,...,( 1 ni ppp  in which the thi  component

ip stands for probability that a customer belongs to type i  when taken for service, ni 1,2,...,= . 
However, he may be diagnosed as requiring the thj type service with probability .1  , njpij ≤≤  Thus a 

customer, conditioned on requiring thi  service, starts getting type j  service with probability ijp . 

Obviously iip  is the probability of being taken for service of type i  under condition of service 
requirement of type i . Define the matrix ( )

njiijp 1,2,...,=,
=P  where thji ),(  entry ijp  is as defined 

above. We also introduce another transition probability matrix ( ))()( = i
jk

i ηΓ  which is an nn×  matrix 
governing transitions among undesired service types until finally the customer in service turns out to be 
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not responsive to further service (realization of a timer) consequent to which he quits without getting 
required service or after some amount of time in undesired type of service, the customer transits to the 
desired service (before realization of the timer). In the latter case, the customer gets the desired service 
and then leaves the system. Thus we have a random clock (timer) governing service process if the 
customer starts getting service in undesired type:   

a) The realization of this timer before identification of correct type of service required to the 
customer, renders the customer unresponsive to further service.  

b) If timer does not realize until the customer is diagnosed of the exact service requirement, then he 
leaves the system completing the desired service.  

c) If the customer directly gets into desired service (correct diagnosis right at the beginning of his 
service) then the timer does not play any role in his service.  

The service time in different types of service are independent PH distributed random variables. The 
clock time (timer) has exponential distribution. 

We analyze the above described model to extract condition for system stability and several useful 
system performance characteristics. 

NOTE: In the sequel we interchangeably use desired / correct / required service; undesired / 
incorrect service; class / type of service. 
List of notations and abbreviations used 

    • CTMC : Continuous time Markov chain.  
    • LIQBD : Level independent quasi-birth and death process.  
    • MAP : Markovian arrival process.  
    • I : Identity matrix of appropriate order.  
    • O : Zero matrix of appropriate order.  
    • 0 : Column vector of '0 s with appropriate order.  
    • e : Column vector of '1 s with appropriate order.  

First we compute the response time (expected time spent in service - leaving the system without 
getting desired service / undesired to desired and complete service / right at the beginning get desired 
service and leave the system). 

This paper is arranged as follows. In Section 2 the response time of a customer (leaving the system 
without getting required service / start with undesired service and before timer realization moves to 
required service / start at the very beginning of service in required class and leave the system) is derived. 
Having done that, in Section 3 we investigate the stability of the system. For the stable system we derive 
state distribution of the system. Performance indices of the system are given in Section 4. Some special 
cases are considered in Section 5. Performance measures are numerically illustrated in Section 6. We 
consider different inter-arrival time distributions to investigate numerically their effect on the mean 
number of customers in the system. Finally we conclude the paper indicating plan of future extension of 
the model described. 

2. Response Time 
Consider the continuous time Markov chain 0})),(),(),(),({(=0}),({ 4321 ≥≥ ttNtNtNtNttS  

where  
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• The probability that a customer selected for service requires the thi  type of service is ip  so that 
1.=...21 nppp +++  

• A customer is selected for service j  but his desired (required) service is i , with probability ijp  and 
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• A random threshold clock (timer) is set, which follows exponential distribution with mean rate iζ  
when required service is i , so that the customer is pushed out of the system if the clock expires before 
service completion in undesired (incorrect) service. 

• For ),(,...,1,2,= )()( i
i

i
i Tni γ  of order )(i

im  gives the PH-representation for the duration of the 
required service time distribution when the service of a customer starts in the required type (when it is 
assumed to be i ). Let )0(i

iT  be such that 0.=)0()( i
i

i
i TeT +  Let eT i

i
i
ii

1)()( )(= −−ʹ′ γµ  be the mean of this 
PH-representation. 

• ),( )(
i

i Uξ  of order )(

1=

i
j

ij
j

m
n
∑

≠

 gives the PH-representation for the duration of the incorrect service time 

distribution when the service of a customer starts in incorrect service class, given that type i  is the 
required service. The thj  component of the initial probability vector ( ) ,,1  ,= )()()( ijnji

j
i
j

i ≠≤≤γξ β  
is the probability that a customer enters to incorrect type of service jwhen actual requirement is iwhere

1=,1= )(

1=1=

i
j

ij
j

iiij

ij
j

n
pp

n
β∑∑

≠≠

− , and nijeij ≤≠≤11,=)(γ . While in service in undesired type the rate 

vector of loss is given by 
*0

iU  and the rate vector of getting into correct service mode is given by 0
iU . 
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We have the following results whose proofs are omitted.  

Lemma 2.1. The probability that a customer who started with incorrect service leave the system without 
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Lemma 2.6. The response time of a customer who started with incorrect service and subsequently 
moved to desired service before realization of the timer is   
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Combining Lemma 2.5, 2.6 and 2.7, we have the following theorem.  

Theorem 2.8. The response time of a customer when his desired service is i , is  
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Corollary 2.9. The unconditional response time of a customer in the system is .= )(
1=

i
Ti

n

iT EpE ∑  Now 
we go for the complete model description and its mathematical analysis.  

3. Mathematical Model 
Customers arrive to the single server system according to a MAP  (Markovian arrival process) to 

form a single waiting line. In a MAP  (see Chakravarthy [3]), the customers arrival is directed by an 
irreducible CTMC  (continuous time Markov chain) { }0),( ≥ttφ  with the state space }{1,2,..., r . The 
transition intensities of the Markov chain { }0),( ≥ttφ  which are accompanied by arrival of k  
customers, are described by the matrices 0,1= , kDk . Vector η of the stationary distribution of the 
process { }0),( ≥ttφ  is the unique solution to the system of equations  

  0=  = )( 10 DDD ηη + and 1= eη  (5) 
The fundamental rate λ  of the ),( 10 DDMAP  described above, is given by eD1= ηλ . 

The ambiguity in identification of required service does not arise from forming a single waiting 
line by customers of all classes. Rather this is due to ignorance of the customers and / server to identify 
the class to which each customer belongs. 

Service time in each type of service follows phase type distribution. The service time distribution 
in different types are different. A timer with exponentially distributed duration starts the moment the 
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Now from (5) and (8) we get the steady state probability vector of A  as  
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Theorem 3.1. The stability of the system is given by the relation  
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Proof. The queueing system under study with the LIQBD  type generator given in (6), is stable if and 
only if (see Neuts [10])  
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20 eAeA φφ  (17) 

This amounts to saying that the left drift rate is higher than the rate of drift to the right. 
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The left drift rate is eDIm )(ˆ 1⊗φ  and the right drift rate is eIS r )(ˆ 0 ⊗αφ  (the fundamental 
arrival rate less than the reciprocal of the mean response time).  
NOTE: In terms of response time that we evaluated in the previous section, we can also write the 

stability condition as 
TE
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3.2. Steady-state probability vector 
A brief outline for the computation of the stationary probability vector of the system state is as 

follows. Let x  denote the steady-state probability vector of the generator Q . Then  
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Next we shall briefly discuss important performance characteristics of the system under study. 

4. Performance Measures 
• Probability that the server is idle:  
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• Probability that the server is busy in undesired type of service:  
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• Probability that the server is busy in undesired type of service:  
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• Probability that the server is busy with the service of a customer in desired type, whose service 
started in an undesired type  
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• Expected number of customers in the system is:  
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• Probability of customers leaving with desired service completion, starting in incorrect service 
type:  

01)(

1=
)()(1= ii

i
iii

n

i
cs UUppp −−−∑ ξ  

• Probability that a customer is lost (leaving the system without getting correct service):  

*01)(

1=
)()(1= ii

i
iii

n

i
loss UUppp −−−∑ ξ  

• Rate at which customers leave successfully after being selected (at the very beginning) in correct 
service:  

iii

n

i
CS ppR ∑

1=
=  

5. Special Case 
Assume that thi  is the required type of service of a customer. Suppose the service process is such 

that, if service started in some incorrect type ij ≠ , which we denote by 1j  then from 1j  the 
customer progressively moves to 2j  then to 3j  and so on finally to 1−nj , all undesired for that 
customer and 121 ...,,, −njjj  are all of which are distinct and different from i . In between the timer 
may realize and the customer goes out or desired type of service is identified and the customer 
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of the incorrect service time distribution when the service of a customer starts in incorrect service mode. 
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undesired service whose actual requirement was i . The rate vector of loss is given by 
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If )1,2,...,=( niith  is required type of service and that is the one initially chosen then the transition 
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(b) The second case deals with the scenario in which the required service is not diagnosed before timer 
realization. Thus the customer starts getting service in undesired type and then keep moving to other 
undesired types. The timer realizes before correct identification of the type of required service, thereby 
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There are cases where customers may have a main service and thereafter none, one or more (atmost 
1−n ) optional services where, in each state the service time is arbitrarily distributed independently of 

each other. 
ig  is the service time density in the essential service (if class i  is the essential service) and for 

optional services labelled nii 1,...,1,1,2,..., +− , the service time densities are nii gggg ,...,,,..., 111 +− ; after 
essential service, the customer chooses one of these as his initial optional service with probability 

niijp j 1,...,1,1,...,=, +−  and then goes to higher states according to a Markov chain rule 

1)(1)()( −×− nnjkp  with 0=jkp  for jk ≤  and 0>jkp  for jk > . In this case the total service time 
distribution is given by  
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Madan [8] and Medhi [9] discuss a single server queue with a second optional service for each customer. 
In our case there are 1−n  optional services; the customers can opt none, one, ..., upto 1−n  optional 
services. 

5.2. The model applied to telecommunication  
Suppose that when a message is generated, it starts service getting in undesired type. This can be 

interpreted as the message encountering a busy server at the time of its generation. Then it goes through 
contention windows checking at the end of each window whether the server is busy. If the server is 
found to be idle before timer realization successful transmission of the message takes place (desired 
service part). 

On the other hand if timer realizes before the server is found idle, then the message does not get 
successful transmission and is discarded. The realization of timer before successful transmission of the 
message can be regarded as it being lost significance, especially when it is of emergency nature; so any 
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(b) The second case deals with the scenario in which the required service is not diagnosed before timer 
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There are cases where customers may have a main service and thereafter none, one or more (atmost 
1−n ) optional services where, in each state the service time is arbitrarily distributed independently of 

each other. 
ig  is the service time density in the essential service (if class i  is the essential service) and for 

optional services labelled nii 1,...,1,1,2,..., +− , the service time densities are nii gggg ,...,,,..., 111 +− ; after 
essential service, the customer chooses one of these as his initial optional service with probability 

niijp j 1,...,1,1,...,=, +−  and then goes to higher states according to a Markov chain rule 
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Madan [8] and Medhi [9] discuss a single server queue with a second optional service for each customer. 
In our case there are 1−n  optional services; the customers can opt none, one, ..., upto 1−n  optional 
services. 

5.2. The model applied to telecommunication  
Suppose that when a message is generated, it starts service getting in undesired type. This can be 

interpreted as the message encountering a busy server at the time of its generation. Then it goes through 
contention windows checking at the end of each window whether the server is busy. If the server is 
found to be idle before timer realization successful transmission of the message takes place (desired 
service part). 

On the other hand if timer realizes before the server is found idle, then the message does not get 
successful transmission and is discarded. The realization of timer before successful transmission of the 
message can be regarded as it being lost significance, especially when it is of emergency nature; so any 
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further retransmission attempt is dropped. For certain protocols (eg. IEEE 802.11 DCF) the above 
description looks quite apt.  

6. Numerical Illustrations 
In this section we provide numerical illustration of the system performance with variation in values 

of underlying parameters. 
We fix parameters 0.4),0.3,0.2,(0.1,=),,,(4,= 4321 ppppn   
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6.1. Effect of ζ  on the system performance 

We note from Table 1 that higher the value of ζ , that is, higher rate of timer realization, higher is 
the probability of server being idle. The measure 1P  is not much affected by the timer realization rate 
since it gives probability of server busy with customer who directly gets into desired service. 2P  value 
decreases with increase in value of ζ  as to be expected; so is the case with 3P  since timer realizes 
before identification of desired type of service, when ζ  increases. The value of csp  decrease with 
increasing value of ζ  since, starting with undesired type of service, identification of desired type 
service can not be realized with faster realization of the timer. Thus customer loss probability, without 
identification of desired service when started in undesired service type, increases with faster rate of 
realization of timer.    
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Table 1. Effect of ζ . 

ζ  P0 P1 P2 P3 Pcs Ploss 

0.1 0.1909 0.2267 0.4642 0.1182 0.3388 0.0112 

0.2 0.2001 0.2289 0.4553 0.1156 0.3282 0.0218 

0.3 0.2093 0.2310 0.4465 0.1132 0.3183 0.0317 

0.4 0.2186 0.2328 0.4378 0.1107 0.3088 0.0412 

0.5 0.2278 0.2345 0.4293 0.1083 0.2999 0.0501 

0.6 0.2370 0.2360 0.4209 0.1060 0.2914 0.0586 

0.7 0.2462 0.2374 0.4127 0.1037 0.2834 0.0666 

6.2. Effect of arrival process 
In this section we investigate the effect of the timer on the number of customers in the system, with 

arrival process having the exponential / Erlang of order 2 / hyper exponential distributions (which are 
special cases of MAP . Thus for the arrival process, we consider the following five sets of values for 

0D  and 1D  as follows.   
1. Exponential ( EXP )  
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5. MAPwith positive correlation ( +MAP )  
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The above MAP  processes will be normalized so as to have a specific arrival rate. However, these are 
qualitatively different in that they have different variance and correlation structures. The first three 
arrival processes, namely, ERLEXP,  and HYP  have zero correlation for two successive 
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The above MAP  processes will be normalized so as to have a specific arrival rate. However, these are 
qualitatively different in that they have different variance and correlation structures. The first three 
arrival processes, namely, ERLEXP,  and HYP  have zero correlation for two successive 

	
  
	
  

inter-arrival times. The arrival processes labeled −MAP  and +MAP  respectively, have negative and 
positive correlation for two successive inter-arrival times with values -0.48891 and 0.48891. The 
standard deviation of the inter-arrival times of these five arrival processes are, respectively, 0.2, 0.1414, 
0.4489, 0.2819 and 0.2819. 

From Table 2 we note that for exponential, Erlang, hyper exponential and MAP  with negative 
correlation the expected number of customers in the system has considerably low values compared to 
that corresponding to MAP  with positive correlation. This discrepancy may be attributed to the fact 
that with positive correlation inter-arrival time gets considerably reduced and thus the system size 
increases much faster.    

Table 2. Effect of arrival process on CN  
ζ  EXP  ERL  HYP  −MAP  +MAP  

0.25 1.2960 1.2640 1.4886 1.3651 46.3492 

0.35 1.2676 1.2336 1.4526 1.3346 45.1494 

0.45 1.2409 1.2049 1.4189 1.3059 43.9779 

0.55 1.2157 1.1779 1.3871 1.2789 42.8349 

7. Conclusion 
We analyzed a multi-class ( n  classes), single server, single waiting line queueing system. Arrival 

process forms a MAP . Service time distribution in class i  is phase type distributed with 
representation ),( )()( i

i
i
i Tγ  of order )(i

im . A customer, assumed to belong to class i , is taken for service 
in class j  at the time when taken for service, with probability njpij ≤≤1  , . A timer starts ticking the 
moment a customer is taken for service. Service in wrong class can lead to permanent damage to the 
customer and hence he may have to leave the system if correct identification of required class of service 
is not made before the timer realization. The stability of this system is analyzed on computing the 
response time of customers. The system state distribution is derived for the stable system. Performance 
measures were computed and numerically illustrated. Further different arrival processes were considered 
to find out their impact on the average number of customers in the system. In a future work we propose 
to introduce n  servers, one each for serving customers assumed to belong to a certain class. Distinct 
queues will be assumed for such class of customers. However, the ambiguity in deciding the class to 
which a customer belongs is still assumed (a class i  customer may join class j  waiting line). 
Analysis of such system is highly challenging. 
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