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Abstract: We revisit some of the classic optimization problems in single- and multi-server
queueing systems. We look at these problems as strategic games, using the concept of social
cost of deviation (SCoD), which is the extra cost associated with a customer who deviates
from the socially prescribed strategy. In particular, we show that a necessary condition for
a symmetric profile to be socially optimal is that any deviation from it, if done by a single
customer, is suboptimal; that is, the corresponding SCoD is nonnegative. We exemplify
this by characterizing the socially optimal strategies for unobservable and observable “to
queue or not to queue” problems and for multi-server selection problems. We then use the
SCoD concept to derive the symmetric socially optimal strategy in a two-person game of
strategic timing of arrival. Furthermore, we show that this strategy is also the symmetric Nash
equilibrium strategy if the service regime is of random order with preemption.

Keywords: Social cost of deviation, strategic behavior in queues, social optimization.

1. Introduction and Preliminaries

The first thing that comes to mind when thinking of queues is waiting. Indeed, most if
not all of the literature on queues deals with this issue or with the closely related issue of
queue lengths. Of course, when the expectations of these two are a matter of concern, then
we know by Little’s rule that they are in fact two sides of the same coin. Expected waiting
time is the long-run average time customers spend in the system from arrival to departure.
This time includes the mean service time but also queueing time which is a result of others
keeping the server busy. Waiting can be looked at as a constant sum game: on average, the
waiting of a tagged customer due to the presence of others coincides with the waiting of
other customers due to the presence of the tagged customer. The latter is known as the
externalities that the tagged customer inflicts on the other users of the system. On average,
queueing and externalities coincide. However, when social optimization is considered, one
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should think about the margins, that is, the marginal social effect of the behavior of a
customer in a given system. For example, the marginal effect of a customer who decides to
join a queue consists of two parts: (1) the waiting time of the arriving customer and (2) the
externalities in the form of the aggregate added waiting time of others due to her arrival.
While the former marginal effect coincides with its long-run average, this is not the case
with respect to the latter marginal effect. Adding one more customer to a congested situation
usually leads to much greater externalities than those inflicted on average, which, as we said,
coincide with the expected queueing time of the extra customer herself.

This observation is the essence of why selfish interests and social interests deviate from
each other when the issue of whether or not to join a queue is considered. Specifically, it is
usually assumed that selfish gain and social gain due to service completion coincide, but
regarding the issue of loss due to waiting, the marginal effect on the aggregate social cost is
usually greater than the individual cost. In particular, in the case where the gain due to
service completion is in between these two costs, selfish customers will decide to join a
queue, whereas social optimization leads to the opposite decision.

This paper has two objectives. The first is to re-examine decision making in queues
through the lens of social cost of deviation (SCoD), defined as the added social cost due to
the deviation of a single customer from the socially prescribed strategy. In particular, we
show how social optimization and SCoD are closely related. We exemplify this relation
mostly in the context of whether or not to join a queue. The second objective is to state and
prove the following new result: the socially optimal symmetric strategy in a symmetric game
is such that letting one player deviate from it does not lead to any improvement. This result,
when stated in terms of SCoD, turns out to be very useful in characterizing the optimal
symmetric strategy. We exemplify this for a problem when two customers decide when to
arrive for service during a given time interval.

The rest of the paper is organized as follows. Section 1.1 contains some well-known
formulas from the field of queueing theory. In Section 2 we define social cost of deviation
(SCoD). In Section 3 we consider a standby customer, namely, a customer who receives
service only when the server would have been idle in her absence, and compare her expected
waiting time with the marginal waiting associated with an arbitrary arrival. Section 4
contains a review of the existing literature on regulation of unobservable and observable
queues. Section 5 deals with the problem of socially optimal routing strategies in multi-
server selection models and its relation to the SCoD concept. In Section 6 we show that in
the case of a symmetric optimization environment where mixed strategies are allowed, a
necessary condition for a symmetric strategy to be socially optimal is that an individual
deviation from it must be suboptimal; that is, the SCoD associated with any strategy must
be non-negative. In Section 7 we deal with a strategic timing of arrival model with two
customers. We use the SCoD concept to derive the symmetric socially optimal strategy, and
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to show that under a random service regime the (selfish) equilibrium behavior is in fact
socially optimal. Section 8 concludes.

1.1. Preliminaries

With the exception of Section 7, we deal throughout with the M/G/1 model: customers
arrive at a single-server queue according to a Poisson process with rate 4. Service times
follow some general distribution with first and second moments ¥ and X’ respectively.
For stability it is assumed that AX, a value denoted by p, is strictly less than one. This is
also the expected number of arrivals per service and the proportion of time in which the
server is busy. Hence, it is usually referred to as the server utilization level. In the case
where service times follow an exponential distribution, the rate of service is denoted by 1.
In particular, ¥ =1/ gz and x* =2/ °. The model in this case is referred to as M/M/1. The
Khintchine-Pollazcek formula says that in the case of a first-come first-served (FCFS)
service policy, the mean queueing time (service exclusive) equals

. Ax’
qF(_FS — , (1)
2(1-p)
which in the M/M/1 case turns out to be
yol
—, (2)
H(1—p)
and the total waiting time (service included) in that case equals, and henceforth is denoted
by,

1
W FCEs — _ 3
w(l=p) )

Note that all these formulas hold not only for the FCFS case but also for any work-
conserving, non-anticipating, and without preemption service discipline.! In the case of
last-come first-served with preemption (LCFS-PR) where an interrupted service, when
resumed, goes on from the point of last interruption, or in the case of a processor-sharing
(PS) service discipline, the waiting time equals, and henceforth is denoted by,
WPS — T
1-p
Also, by Little’s rule, the mean number of customers in the corresponding queue or system
can be computed by multiplying each of the above expressions by A .

(4)

'In the case of an M/M/1 system, the assumption of non-preemption can be dispensed with.
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2. Social Cost of Deviations and Externalities in Single Server Queues

Definition 2.1. Consider a symmetric game and two strategies S, and S,. The social cost
of deviation (SCoD) from S, to S,, denoted by SCoD(S,,S,), is the difference between the
sum of all individual expected costs resulting from two scenarios: (1) one arbitrary player
uses strategy S, while all the other players use S,, and (2) all the players use strategy S, .

In the queueing context, described in detail in the following sections, decision making
involves comparing the benefit from service with the loss from waiting. Therefore, a key
parameter of a queueing system that needs to be computed to determine SCoD is the
expected aggregate added waiting time that an arbitrary arrival imposes on society as a
whole (her inclusive). This is the expected difference in the total waiting time between a
system with this arrival and a simulated one without it. We refer to this parameter as
marginal waiting. In Haviv and Ritov [19] there are expressions for marginal waiting under
various models. For the M/G/1 model under FCFS and under LCFS-PR marginal waiting
equals

i o)) )
2(1-p)
and
X
—. (6)
(I-p)
respectively. These two expressions coincide in the M/M/1 case and turn out to equal
1
—, (7)
u(1-p)’

which also holds for the M/M/1 model under the PS service regime.

Note the denominator of the marginal waiting expressions above. It comes with an
extra inflating scale of 1/(1— p) in comparison with the mean waiting time. For example,
in the M/M/1 case where x# =1 in a system whose utilization level equals 0.9, one needs
to spend 10 time units in the system on average but adds 100 time units of waiting to society
in total (for only one time unit of service!). The externalities that an extra customer inflicts
on others here equal 90 and they are spread among a number of customers. In the FCFS
case, the expectation of this number is 90 as well, and it equals the expected number of
customers who arrive after the arriving customer but before the first server idleness.?

2This can be proved as follows: upon arrival, the expected number of customers in the system (including the
arriving customer) is 10 and therefore the time till the first idleness is distributed as 10 independent busy

periods. During each of these independent busy period an expected number of 1/(1— p) =9 customers
arrive. Each such arriving customer incurs an extra waiting time of the same length as the service time of the
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3. Marginal Waiting and Standby Customers

The value of W"™* coincides with the mean amount of work in the system upon arrival
of a new customer (inclusive of the just-added service time). Since this parameter is not a
function of the queue regime (as long as it is work-conserving), it applies to all models we
consider here. Consider now the mean time in the system of a standby customer defined as
a tagged customer who is singled out to receive service only when the server would have
been idle without her. The service of such a customer might be preempted, but it is resumed
from the point where it was last interrupted. Clearly, the expected waiting time of a standby
customer coincides with the expected time from her arrival until the server is idle for the
first time. Note that this parameter is also invariant with respect to the queue regime (again,
assuming work conservation) and it is well known to be equal to W™ /(1—p) . See, e.g.,
Haviv [13], p. 63.

It is tempting to jump to the conclusion that the mean time in the system of a standby
customer coincides with the marginal waiting time as such a customer does not inflict any
externalities. This is indeed true when service times are exponential. However, it is not
always the case as the former is invariant with the queue regime, while the latter, as we will
show shortly, is not thus invariant when preemptions are allowed. What is the reason behind
this difference? The answer is that the extra preemptions that are associated with a standby
customer have an effect on the overall performance of the system in comparison with the
case without preemptions. In principle, and in fact this is the case, the effect of preemptions
can be negative or positive and, of course, a zero effect is not ruled out.

Thus the next parameter we are after is the difference between the marginal waiting
time and the expected time in the system for a standby customer. First observe that in the
case of an M/M/1 queue this difference equals zero, as expected: in the case of exponential,
i.e., memoryless service, preemptions do not have any effect on the performance of the
system as a whole. A natural question arises: is exponential service also a necessary
condition for this equality? The answer, as we show next, is no. In the following two
examples, where M/G/1 is under the FCFS or the LCFS-PR regimes, equality is achieved if
and only if x*=2X7, which of course holds in the M/M/1 case.

FCFS: Recalling (5) and (1), the difference in the FCFS case equals

_AxXC-p) (o A ) o p o o
-y {”2(1—9)}“ S

where 7 = x’ / 2X is the mean residual service time. In particular, this difference equals zero
if and only if x* =2%".

extra customer, i.¢.. 1.
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LCFS-PR: Recalling (6), the difference in the LCFS-PR case equals

3 A L
(1—p)2_{“2(1—p)}1_p) o

which again equals zero if and only if x* = 2%,

3.1. Conditional externalities in M/G/1 queues

Clearly, in the stochastic queueing environment different customers not only
experience different waiting times but also inflict different externalities. In particular, some
information, or a signal, on the queueing process leads to the corresponding conditional
expected externalities. A natural question that arises is, what is the expected externalities
given one’s service requirement?

We next state four such values for the M/M/1 FCFS model: the first three appear in
Haviv [ 15], while the fourth appears in Mendelson and Wang [22] and Haviv and Ritov [19].
Consider an arbitrary customer and let £, W, I, L,, and S be the (realization of the)
externalities she inflicts, her waiting time, the queue length upon her arrival, the queue
length upon her departure, and her service time, respectively. Then the conditional expected
externalities she inflicts are given by

B(E|W)=—L—w
I-p

]E(E|L)_L_ &
u(l—p) wu
I,

F(E|L,)=—%—

(I H(1=p)

BE|S)=—2— 8§ +—L g
2Al=p)  (=p)

It is interesting to observe that the first three functions are linear while the fourth is
quadratic (with a zero free coefficient). It is noteworthy that the fourth result is generalized
to the M/G/1 case. In particular, the expected conditional externalities given S equal (see
Haviv and Ritov [19])

A, AN
+ —S
2(1-p) 2(1-p)

4. Regulation of Single-server Queues

We next deal with the most basic and most important decision in a queue: to join or
not to join. This decision problem goes back to Naor [23] and Edelson and Hildebrand [5].
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See Hassin and Haviv [10] and Hassin [9] for a survey of the literature. The model assumes
an M/M/1 queue where each service completion leads to an individual reward of R but
customers suffer a cost of C' per unit of time in the system (service inclusive). Customers
decide whether or not to join. They do so by comparing R with their expected waiting cost
in the case where they join. Note that with regard to the waiting cost, they need to take into
account decisions that were made, or are going to be made, by others. Without loss of
generality, we assume that not joining comes with no cost and no reward. There are two
versions of this problem. One is the unobservable case, where customers do not inspect the
queue when they make up their mind (see Edelson and Hildebrand [5]), and the other is the
observable version, where they do (see Naor [23]). We begin with the former case.

4.1. Individual vs. social optimization: The unobservable case

In order to avoid trivialities, assume that R > '/ y (as otherwise no one joins, even
when the system is empty) and that R < /(u(1— p)) (as otherwise it is optimal to join
even when all others join). Customers face a symmetric non-cooperative game with two
pure strategies: to join and not to join. A Nash equilibrium here is a possibly mixed strategy
that, if used by everyone, is a (not necessarily unique) best response for an individual. Our
assumptions on the cost and reward parameters lead to the fact that both “everyone joining"
and “no one joining" are not equilibrium profiles. Hence, we look for an equilibrium that is
based on mixing. Denote the joining probability under a mixed strategy by p. The
equilibrium mixed strategy, denoted by p,, is a joining probability such that, if used by
everyone, no one can do better by using some other strategy. In particular, an individual is
indifferent between joining and not joining under this scenario. This leads to p, being the
(unique) solution in p for

N S
u(1=pp)
This indicates that

C
A = — —
pe # R

is the equilibrium arrival rate (which is not a function of 4 as long as the right-hand side is
nonnegative, which is in fact assumed).

From the social point of view, the equilibrium strategy is quite poor: it leaves those
who join, as well as those who do not join, with zero utility. Clearly, reducing p to any
positive value below p, leads to a positive consumer surplus. So the next question is what
is the socially optimal joining probability, denoted and defined by
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C
p,=arg max 1 p| R———— |}.
0<pp, { [ (11— pp)]}

The first-order condition of this optimization problem is
R=—C ®)

u(l=p,p)
which can be interpreted as follows. From (7) we learn that under the socially optimal
scenario, the social gain from joining, R, equals the marginal waiting cost; that is, society
is indifferent to whether or not a marginal customer joins. Rearrangement of (8) indicates

that
Cu
Ap = u— . |—= 9
P=H "R )

is the socially optimal arrival rate (which is not a function of A4 as long as the right-hand
side is nonnegative, a fact that easily follows from our assumption that R>C/ u).

To summarize, while under p, individuals are indifferent between joining and not
joining, under p,. society is indifferent.

4.2. Regulation by charging an entry fee

Society wishes everyone to behave in accordance with p,; however, the standard
assumption is that when left to themselves, users behave in accordance with p, . In
particular, when p_ is used the individual utility from joining is strictly positive so that not
joining with some positive probability is individually suboptimal. To deal with this “tragedy
of the commons" situation one needs to look for a way of modifying the rules (sometimes
called mechanism design) in order to incentivize customers to follow the joining probability
of p, rather than p,.

Perhaps the first solution that comes to mind is to charge an admission fee: everyone
who joins pays some amount of money, denoted by 7. This makes joining less favorable
than before since from the customers’ point of view, service is now rewarded by R — 7'
rather than by R . The optimal amount of such a fee, denoted by 7, implements p, as the
equilibrium joining strategy and hence is the (unique) solution in 7" of

Rr-—C g
w(1=p.p)
which leads to
T,=R- C_R
H
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However, and even more interesting, recalling (8) immediately leads to
_ C B C .

Cou(-ppy w(-pp)
that is, everyone who joins pays the externalities they inflict on society (the marginal waiting
cost minus their own share of this cost) under the assumption that p, is the actual joining
probability. Such a fee, when everyone pays the externalities they cause, is known in the
economic circles as a Piguvian tax Pigou [24].

An alternative scheme is to sign a binding contract with a joining customer that charges
a payment f(X), where X is some random variable (whose value is unknown to the
customer upon signing) and where f(-) is some real function. In the case where
F(f(X))=T,, regulation is achieved. There is no limit with respect to selecting such
schemes but those that are more appealing come with an X that has something to do with
the queueing process experienced by the signing individual. This can be for example the
signing individual’s service time. Then, by choosing f(X) to be the conditional expected
externalities given X, E(f(X))=17. is guaranteed by the law of total expectation .’

Recalling the discussion in Section 3.1, we consider four options for X: W, L, L,,
and S, and the conditional externalities stated there. Since we are considering the socially
optimal arrival rate, we need touse Ap, wherever A appears in these formulas. In particular,
from (9) we know that Ap, = u—+/Cu/ R . Further simplification leads to the following.

Theorem 4.1. The following four contracts regulate the joining rate:

Sy =C(JRu/C - 1)W

‘ f(La)ZC(\fR/Cu—ll,u)La
L) =CR/ uL,
| f(S)=ﬂTC(1/Ry/C—1)5‘3+C(JRMC—I)ES.

Two other regulating contracts are presented below. They are based on W and L, but
are not the expected conditional externalities. Nevertheless, it is easy to show that their
expected values coincide with 7.

Theorem 4.2. The following two contracts regulate the joining rate:

1. f(W)=%W2—CW

3This is not the only option since, as mentioned, any f(-) with [E(/(X))=7. will do.
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2. f(L,)= (—La + (—'La.
2u 2u

Proof. See Kelly [21].

An important feature of the contracts considered above is that potential customers
decide whether or not to join and sign them before knowing their realized value. An
alternative approach is a random fee whose realized value is revealed to the customers prior
to making their joining decision. Such a random fee needs to deter the optimal fraction of
customers from joining, as the following theorem states.

Theorem 4.3. A random entry fee regulates the joining rate if and only if it is drawn from
a distribution with CDF, denoted by F(x), that satisfies

F(T)=p,.

Moreover, the resulting equilibrium behavior is to join if and only if the realized value of
the fee is less than or equal to T, .

Proof. See Haviv and Oz [17].

An advantage of the random fee is that unlike under the other charging schemes,
customers are now left with some (distribution-dependent) strictly positive consumer
surplus.

4.3. Regulating by auctioning for priority

Hassin [8] suggests the following regulating scheme for an unobservable queue. Upon
arrival, customers can either join or not join. Of course, the latter option comes with no
reward or penalty. In the case of joining, customers are given the option to pay as much as
they wish and their priority in the queue will be based on their payments. Specifically, one
who pays x has a preemptive priority over those who pay y, with y < x. Ties are broken
randomly. In particular, no seniority in the queue is respected. Here too customers are
engaged in a symmetric non-cooperative game, where a mixed strategy prescribes a joining
probability and some distribution of payments over the nonnegative axis. The question then
is what is the equilibrium mixed strategy. No matter how simple or complicated the resulting
equilibrium 1is, from the social point of view there is only one thing that matters: the
probability of joining prescribed by the mixed strategy. In Hassin [8] it is shown that this
probability equals p, and, in particular, that this mechanism leads selfish customers to
behave in equilibrium in a socially optimal way.

Of secondary interest is the distribution of payments for priority. We state it next and
claim that everyone who joins in fact pays the externalities she inflicts (given that everyone
behaves in accordance with this profile). Specifically, the payment is a continuous random
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variable whose support is [0,a] with
o C
ul=pp)  u

and whose cumulative distribution function F(x) can be read from the condition

C =
(1= p,p(1=F(x))’
We next argue for the assertion that the equilibrium joining probability coincides with p, .
First, observe that the equilibrium distribution cannot include atoms at any point, as
otherwise one is better off paying infinitesimally more and gaining a quantum reduction in
waiting by overtaking everyone who joins and pays the value of the atom. Also, zero is
clearly in the support of the equilibrium payment continuous distribution: if the lower edge
were strictly larger than 0, it would be better for an individual to deviate from it to zero as
no priority would be lost and the payment would be strictly smaller. Consider now a
customer who pays zero. She becomes a standby customer among all those who pay and
join. Her utility equals R—C / u(1— pp)’, where p is the proportion of those who join.
But, in equilibrium, her utility (like everybody else’s) ought to equal zero as this is the utility
that comes with not joining that is a pure strategy in the support. Thus, recalling (8), p here
equals p .

<

N = = .

R—x—

4.4. Regulating M/M/1 by selecting the service regime

The commonly used queueing regime is FCFS. Deviating from this regime and
adopting another one may result in a different equilibrium that results in better (or worse)
social welfare. As we have just seen, despite the fact that money transfers are involved,
switching to a service policy based on auctioning priority leads to socially optimal behavior
in the unobservable case. We next show that in both the unobservable and observable cases,
there exist service regimes that result in social optimization and do not involve any money
transfer.

4.4.1. The unobservable case

Haviv and Oz [17] propose the following regime, which we call preemptive random
priority. Specifically, upon arrival a uniformly [0,1] random variable, denoted by U, is
drawn. The arriving customer inspects this number and decides whether or not to join. In
case she joins, the number drawn becomes her preemptive priority parameter (the lower the
number, the higher the priority). We claim that the unique symmetric equilibrium strategy
is to join if and only if U < p_. Specifically, it leads to the socially optimal arrival rate as
the effective joining probability is P(UJ < p.) = p, . The reasoning is as follows. Assuming
that everyone uses the above strategy, a joining customer with a drawn value of U < p_ is
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a standby customer with respect to other customers with lower values than hers, which are
a fraction of U/ of the total arrival rate, and therefore her utility from joining equals

¢

u(1-Up)*

which, by (8), is nonnegative. Also, a joining customer whose {/ = p_becomes a standby
customer with respect to the other joining customers and her utility is
R-C/(u(1-p.p)’)=0, which is the same utility that comes from not joining. In
particular, not joining is also her best response. A clear advantage of this scheme, on top of
the absence of the money transfer property, is that the regulator does not need to know the
model’s parameters and, in particular, there is no need to adjust the scheme in case that their
values change.

Some variations of this scheme are suggested in Haviv and Oz [17]. Clearly, informing
the customers of any monotone increasing function of U, rather than U itself, won’t matter:
if the function is g(-), then the threshold value will now be g(p,), rather than p . An
attractive option is to take g(/)=1/(u(1-Up)’) . The rationale is that g(U) is now the
expected waiting time for a customer who holds priority parameter U and joins, given that
everyone who has higher priority than her joins as well. Another option is to have
gU)=1/(u(1-Up)*) for U < p, and g(U)=1/(u(1- p.p)*) for U= p_. Now the function

g(U) yields the expected waiting time of a customer who joins, given that everyone behaves
in accordance with the equilibrium joining policy (which is also the socially optimal one).
These two variations indeed lead to socially optimal behavior, but now the regulator needs
to know some, or all, of the four model’s parameters in order to implement them.

In the case where service is non-customized, for example, the server cooks burgers for
hungry people who line up, there is no need for preemption. Specifically, upon service
completion, the one who receives the completed good is the one who has the highest priority
among all those present at that instant. The sample path of the queue is the same as in the
case with preemptions due to the memoryless service distribution.

4.4.2. The observable case

Naor [23] studies the observable version of the above-mentioned decision problem. In
fact, this paper preceded Edelson and Hildebrand [5] and it is rightly considered the paper
that spawned the literature on customers’ strategic behavior in queues. In his model,
customers inspect the queue upon arrival and based on what they see, decide whether or not
to join. The equilibrium analysis of this decision problem is rather simple and in fact is
achieved by a dominant strategy which is to join if and only if », the number seen upon
arrival, is less than or equal to 7, —1, where
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n,= max{I?Zl, C£SR}
7 H

The issue of selecting the socially optimal threshold is in fact a Markov decision problem,
where, in each state, composed of the number in the system upon an arrival, the manager
decides whether or not to admit the new customer. Naor shows that the value of the objective
function is a unimodal function with a peak and that the socially optimal threshold for the
number in the system, denoted by 7, equals | x|, where x uniquely solves

x(1-p)-p(1=p") _ Ry (10)
(1-p)’ ¢

For an alternative proof see Hassin and Haviv [10], p. 27-29.

The above condition can also be presented in terms of SCoD.

Theorem 4.4. Recall definition 2.1. The optimal threshold strategy n_ is the unique integer,
n =1, that satisfies
SCoD(n—1,n)>0

and
SCoD(n+1,n)>0.

Proof. To calculate the corresponding SCoD values we use the following results. Consider
an M/M/1/(n+1) queue with exactly n customers in the system. Denote by 7, the
expected time until the queue length reaches O or n +1, and by P, the probability that it
reaches O before it reaches n + 1. The values 7, and P, are derived in Hassin and Haviv
[10], p. 28, using the gambler’s ruin formulae, and are given by

n—(n+l)p 1=p

1 a4+l

T = 11
! w(1-p) (n

P =t (12

P

Consider a customer who follows strategy » —1 while all the other customers follow
strategy »n . The aggregate social cost is affected, compared to the case where she too
follows strategy n, only if she finds n —1 customers upon arrival. Denote the probability
of this event by 7z, . In this case she does not join, and the queue length remains n -1,
while if she joins, the queue length becomes n . We next refer to the queue length processes
under the former and latter scenarios as the actual and simulated processes, respectively.
From the arrival instant of the tagged customer the two processes differ by 1 until they
coincide for the first time. That happens when either one of these two events happen: (1)
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the actual process reaches n, or (2) the simulated process reaches 0. Therefore, this period
equals the aggregate waiting reduction under the actual process compared to the simulated
one. Clearly, the expectation of the period coincides with 7. Now, if this period ends when
the simulated process reaches 0, then a reward of K is lost from the social gain, whereas
if it ends when the actual process reaches #, the reward lost is offset by the last joining
customer’s reward, which is gained under the actual process but would have been lost under
the simulated one. The probability of the former event is clearly £ . In summary, the
difference between the social cost under the actual process and that under the simulated
process is

SCoD(n—1,n)=x, (PR-CT)).

Similarly, consider a customer who follows strategy » +1 while all the other customers are
following strategy » . The aggregate social cost is affected only if she finds » customers
upon arrival. Denote the probability of this event by 7, . In this event she joins, and the
queue length becomes 7 +1, whereas if she does not join, the queue length remains » .
Again, we refer to the queue length processes under the former and latter scenarios as the
actual and simulated processes, respectively. The two processes differ by 1 until they
coincide for the first time. For that to happen there must be a service completion first, which
takes 1/ 2 on expectation. Then, one of these two events must happen: (1) the simulated
process reaches n, or (2) the actual process reaches 0. Once again, the expectation of the
periodis 7). Therefore, the aggregate added waiting under the actual processis 1/ u+17, .
Now, if the two processes coincide for the first time when the actual process reaches 0,
then an additional reward of R is gained, whereas if it happens when the simulated process
reaches », the reward gained by the additional customer is offset by the last rejected
customer’s reward, which is lost under the actual process but would be gained under the
simulated one. The probability of the former event is £ and, in summary, the difference
between the social cost under the actual process and that under the simulated process is

SCoD(n+1,n)=x (C(1/u+1)—PR).
Now that the expressions for SCoD(n —1,n) and SCoD(#n +1,n) are in hand, using (11) and
(12) along with some simplification shows that SCoD(77—1,7) > 0 if and only if
n(-p)-p(-p") _Ru

(1-p) C

and SCoD(n+1,n)>0 if and only if
(n+1)(1-p)-p(1=p"") _ R

(1-p) c’

which, by the monotonicity of the expression n(1—p)—p(1—p") in n (proved in Naor
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[23]), leads to the same condition in (10).

It is also possible to show that SCoD(k,n, ) >0 for all 0<k <n —1. We omit further
details as the analysis uses similar arguments to those used in the proof above.

Observe that n <n,. The rationale behind this is similar to the rational behind
P, < p, in the unobservable version of this model. In both versions, customers, if left to
themselves, cause congestion that is greater than desired. Indeed, customers who inspect the
queue length and take into account only their own utility may join in cases in which society,
which takes into account also the negative externalities they impose on others (in terms of
making others wait longer due to their presence), would prescribe otherwise. The imposition
of a toll may regulate the system. In fact, any entry fee, 7', such hat

n =max{n21, QQR—T}’
n y7i
leads to regulation.

Hassin [7] suggests a regulating policy for an observable M/M/1 queue by changing
the service regime to any regime under which an arrival is placed anywhere but at the rear
of the queue. Note that in the case where the arrival meets only one customer in the system,
who of course is in service, she preempts the latter and commences service immediately
upon arrival. An example of such a regime is LCFS-PR. Customers will be happy to join
and the decision they face now is in fact when to renege. An assumption made here is that
customers continuously monitor the queue length ahead of them. Indeed, if the queue ahead
of them is too long, one is better off leaving for good. It is easy to see that under the resulting
equilibrium, if anyone reneges, it will be the one at the rear of the queue. From the social
point of view only one thing matters: how many customers remain in the queue after
someone reneges. If this number is always #7_, social optimality is achieved. Hassin argues
that this is indeed the case. The reasoning is as follows. The customer at the rear generates
no externalities on others since under this scheme she will always be at the back of the line.
Hence, her considerations of costs and rewards coincide with those of society. As society
prescribes no more than 7, in the system and will order her to leave (indeed, society does
not care who will be the one to renege), she will reach the same conclusion. Note that the
implementation of this scheme does not involve any money transfer and does not require
the manager to know any of the model’s parameters.

Haviv and Oz [16] suggest another scheme. Suppose that there are an infinite number
of ordered waiting slots. An arrival inspects them and learns which of them are occupied
and which are vacant. She has the option to leave for good (balk) or to select one of the
empty slots. Once a customer selects a slot, she stays there until her service is completed.
In particular, changing slots or reneging later are not allowed. The server always serves the
customer who is at the lowest-indexed slot among those that are occupied. This priority is
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kept in a preemptive manner.* The first question to ask is, what is the equilibrium strategy?
The answer is as follows: an arrival joins the lowest-indexed empty slot as long as its index
is less than or equal to 7, . It is possible to see that the same logic that explains Hassin’s
LCFS-PR regime holds here as well. In particular, social optimality is achieved with this
scheme that does not require any knowledge of the the system’s parameters from the
operator’s side, nor is there a need for any money transfers. Another advantage we have
here is that no service is granted to customers who may renege later. For three more schemes,
one based on charging a queue-dependent entry fee, one based on charging for a priority
level, and one based on concealing the queue length and charging a constant fee, see Chen
and Frank [4], Aleperstein [1], and Hassin and Koshman [12], respectively.

5. Server-selection Problems

Consider a multi-server system with a common arrival process. Specifically, there
exists a Poisson stream of arrivals at rate A . Each arriving customer selects one out of »
exponential servers, where server i serves at a rate of x4, 1<i<n. Server selection is
done in an unobservable fashion and without later regrets. A symmetric strategy profile is
thus a probability distribution ” =(p,,..., p,) over the servers, such that server i is selected
with probability p, >0, 1<i<n, and Z p, =1. For ease of exposition, pure strategies
are next denoted by an integer such that under strategy j, 1< j<n, server j is selected
with probability one. These selections are done independently across the customers and
hence the arrival process to server / is Poisson atrate Ap,, 1<i<n . Moreover, these n
processes are independent. We next deal with two decision models. The first is where each
server forms an M/M/1 queue and the second is where each forms an M/M/1/1 loss system.

5.1. Single-server queues

The following model was introduced in Bell and Stidham [3]. See also Hassin and
Haviv [10], p. 62-64. In this model each of the above-mentioned single-server systems
operates as an M/M/1 queue, where £ = £, >---> y  is assumed without loss of generality.
The socially optimal routing strategy minimizes the total expected number of customers in
the system; that is, the optimization problem is

i

plsisn’s l — ﬂ,p,

1

st. Yp =1

i=1

“In case of non-customized service, the one who receives the completed product is the one at the lowest-
indexed occupied slot. Of course. preemption is not an issue here.

46




Queueing Models and Service Management

p.=0,1<i<n

The first-order conditions of this constrained optimization problem are as follows. For some
value 8 >0 (which is the Lagrange multiplier of the equality constraint) and for each
I<i<n,if 1/ >6 then p =0, and
1
=0
ﬂ;(l - /]"‘pi "'{1“;')

otherwise. In particular, since £ are ordered, there exists some index 7, 1<i <n, such
that only servers i, 1<i<i_, operate, namely, their optimal p, are positive, while all the
other servers (if any) come with a zero socially optimal p,, i>i_. Note that the former
class is never empty, while the latter may be so. Indeed, this is the case when A is large
enough.

The first-order condition is consistent with the following intuitive explanation. Under
the socially optimal routing strategy, a marginal arrival is routed with positive probability
to servers to which her joining will incur the minimal marginal waiting. This is true since
the marginal waiting time associated with joining server i is 1/ 4, (1—Ap,/ 1) if p,>0
(see (7)) and 1/ g, otherwise; as in the latter case, the marginal waiting time consists only
of the service time of the joining customer herself. It can also be seen that given that all
behave in accordance with the socially optimal routing strategy, the SCoD from it to any
pure (and hence, any mixed) one is nonnegative.> We do not give further details here since
they would be quite similar to those given in the next section, which also deals with routing,
but to loss systems rather than to queues. .

The first order condition in (13) coupled with ) * p, =1 leads to

XJuy
(=27

and then the socially optimal arrival rate to server 7 is

=g P S -y 1<i <,
il

(13)

8=

i
N

2w

i=1

Finally,

5In fact, it is zero in case of joining server 7, 1 <i < 1., and strictly positive otherwise.
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J
N/,
> ;
Hin (Zﬂ; _ /1)3
i=1
where u ,, =0 1Itis possible to see that the resulting value for & is the Lagrange multiplier

of the constraint Z;pf. =1 under the optimal solution. Indeed, its value is the shadow price
of this constraint.

i, =min< j: I<j<n

3.2. Loss systems

The following model and the results that are surveyed here appear in Anily and Haviv
[2]. We now assume that each of the servers is an M/M/1/1 loss system. Hence, under
steady-state conditions a customer who seeks service from server / receives it (immediately)
with probability z /(Ap, + 1), 1<i<n. The complementary probability is that she is
lost and never receives service. We also assume that receiving service from server i is
valued at «,, 1<i<n, and, without loss of generality, ¢; =a,=---=¢, . The social
objective is to maximize the expected gain per unit of time (or per customer). Hence, it can
be put as

LA,
p“}axz,: o+ Ap,

1

s.2. Zp,. =1

=1
p;20,1<i<n

Here too, the first-order conditions have the following form. For some 8 >0 and for all
1<i<n,if a, <6 then p,=0.Otherwise,

4 5 -0 (14)
(4, +2p,)

In particular, since ¢, are ordered, there exists some index i, 1<i <n, such that only
servers 7, 1<i7<i_ come with strictly positive routing probabilities. The interpretation in
terms of SCoD is also possible here.

Theorem 5.1. The optimal routing strategy P satisfies
SCoD(j,P)=0,1< j<n,

with equality if p >0.

Proof. We make use of the following lemma.
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Lemma 5.2. Consider an M/M/1/1 loss system with an arrival rate of A and a service rate
of . Assume that the service reward equals o . Consider an arbitrary arrival. The
expected difference in the social gain between a case where she joins and a case where she
does not equals

ﬂ—.,}a
(A+p)

In particular, if A =0, this value equals o .

(15)

Proof. The only arrival and service pattern under which there is a difference in the social
gain under the two scenarios is if the following two events occur: the arriving customer
finds an empty server, and then no one arrives before her service completion. In that case
the difference in the social gain is o . Also, the former event happens with probability
1t/ (pA+ ), and as it turns out this is also the probability of the latter event. For more on
this derivation see Anily and Haviv [2].

Consider a customer who follows the pure strategy j, 1< j<mn, when all other
customers use strategy P . The difference in the social gain (negative cost) compared to
what it would have been if she used P is non-zero only if under the latter scenario she had
been routed to server i, i+ j. Thisisa p, probability event. In that case, by Lemma 5.2
the gain lost by not having been routed to server /i minus the gain due to being routed to
server j instead equals

- 2

b o -—E 4
(pA+uy ~ (pA+u)

Therefore,

SCoD(j,P)= Zp[( A H; zaj}

iz

_— ﬂ_"-'a
i*], p =0 ' /1 + ﬂj) !
and the theorem follows since under the socially optimal strategy ,ufaj I(p,A+u, ) <6
andif p >0 then ula /(p,A+u) =0
It 1s now clear that the first-order conditions have the following interpretation: an
arriving customer is routed with a strictly positive probability only to servers that lead to
the minimal SCoD, which equals zero.
The above leads to a computation procedure for finding 7, as well as the individual
routing probabilities to servers 7, 1<i<i_ . Specifically, (14) coupled with Z‘,pf =1
leads to
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g=| -
S+ A
i=1
and
Ap,.Z,ui[ Lo1i<i<i. (16)
2
Also,
j 2
S
ip=ming joa,, <|S——| 1< j<n,,
IRV
i=1
where «, ,=0.

n+l

Finally, note that the problem simplifies considerably in the case where the rewards
are server independent. In this case all servers are active. Moreover, the arrival rates to the
individual servers are proportional to their service rates, as can be inferred from (16).

6. The Equal SCoD Optimization Property

According to the definition of a Nash equilibrium profile, each (possibly mixed)
strategy used by an individual player has the following property: all pure strategies in its
support lead to the same cost, which is less than or equal to all costs achieved by pure
strategies outside its support.® Besides the theoretical interest of this property, it has also
much value in the computational search for equilibrium profiles: the just-stated conditions
lead to a set of equalities and a set of inequalities (sets which vary with the support of the
strategy ), whose solutions (when they exist) are the equilibria one is after.

As shown for each of the models we have dealt with so far in this paper, a similar
property holds for the socially optimal strategy where individual costs are replaced by the
SCoD. This property is formally stated in Corollary 6.2 below. For example, in the
unobservable M/M/1 problem it is socially optimal to join with probability p,, that is, a
mixed strategy where both “join" and “do not join" are in its support. Indeed, (8) implies
that the SCoDs associated with these two strategies are similar, and equal zero. In the
observable case, Theorem 4.4 implies that the socially optimal strategy is the only threshold
strategy which the SCoD from it to all other strategies is positive. In other words, society
admits only those whose net social cost is negative. Finally, in the two routing problems,

“The former class is never empty, while the latter class might be so.
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(13) and (14) imply that those servers selected with positive probability, namely, those that
are in the support of the socially optimal strategy, have the same zero SCoD, whereas those
that remain closed have higher SCoDs.

In all the examples described above the characterization of the socially optimal strategy
in terms of SCoD suggested in this paper is equivalent to the corresponding characterization
that appears in the literature and is based on classic optimization and first order conditions.
Nevertheless, the two approaches are fundamentally different. Classic optimization and first
order conditions are based on the impact of an infinitesimal deviation from the socially
prescribed strategy by al/ the customers, whereas the SCoD approach analyses the impact
of the deviation of a single customer. The purpose of this section is to extend this idea
beyond those cases where the equal SCoD property is revealed by means of multivariate
optimization analysis. We next show that this property generally holds in symmetric games,
where one looks for the socially optimal symmetric strategies.

Consider an N -player symmetric game, N >2 . Let SC(HIW%)(S,,...,S;{) be the
expected social cost when 7, >1 players use (the possibly mixed) strategy S, 1<i<k,
and ZL}:i = N . When all players use the same strategy S, the resulting social cost is
hence denoted by SC,(S). As before, the social cost of deviation from S, to S, is
denoted by SCoD(S,,,) and defined as the difference in the social cost between the case
where all use S, but an arbitrary player uses S,, and the case where all use strategy S, .
In the above notation,

SCoD(S,,S,) = SC(I,N—I)(SZRSI )— SC{N)(SI ).

A socially optimal symmetric strategy is defined as a strategy S" such that

S carg mSin SCy, ().

Suppose now that all players use S and the social planner is able to change the strategy

used by one player. One might think that this added option leads to further improvement in
the social cost due to the fact that the optimality of S" is only among symmetric strategies.

The following theorem shows otherwise; that is, under this scenario it is also optimal to
assign S" (or any pure strategy in its support) to the tagged player.

Theorem 6.1. If S is an optimal symmetric strategy, then
S e arg minSCoD(S,S"). (17)
S

Proof. Let S be some arbitrary strategy. Denote by S, the strategy under which one mixes
between strategies S and " , giving probability £ to the former and probability 1 —& to
the latter. Observe that the social cost when all use this mixed strategy is
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N!

vy Cawn(S:5)

N
SCoy(S) =D (1-e)"*
k=0
By the optimality of §°, the minimum of this polynomial of degree N over & [0,1] is

obtained at & =0. Since £ = 0 is a boundary solution, this implies that

d ) ) o
0 ﬁESC(N)(Sg) =(SC; v 1,(8.87)=SC (S )N =SCoD(S,5")N

&=0

and the theorem follows since SCoD(S",5)=0.

Corollary 6.2. (The equal SCoD property) 4 symmetric socially optimal strategy S
satisfies

SCoD(s,S") =0, s support(S").

Proof. The condition in (17) implies that a necessary condition for S* to be an optimal
symmetric strategy is that for any other strategy, in particular, any s < support(S’) ,
SCoD(s,S") =SCoD(S",S") =0. The fact that SCoD(S",S") is an expectation over the pure

strategies in the support of the strategy in its first entry completes the proof.

The above remark can lead to a set of conditions that are obeyed (hopefully, uniquely)
by S°. We next exemplify this in the analysis of the socially optimal symmetric strategy
when two customers choose strategically their arrival time to a queue.

7. Social Optimization and Regulation in Strategic Timing of Arrival

Another decision problem of interest is when to join the queue. This line of research
was opened in Glazer and Hassin [6]. The assumption is that a (possibly random) number
of customers seek service along some bounded time interval, say [0,7] for some 7 >0.

Service continues after time 7' until the system is empty. Service times are random and
for simplicity of analysis are assumed to be exponentially distributed with rate . Asin all
models dealt with here, customers suffer a waiting cost that is linear with the time they have
to wait.” Assuming a FCFS regime, customers decide when to arrive so that their waiting
will be as short as possible. There are usually two versions of this problem. One is where
the seniority of those arriving before opening at time zero is respected, and the other where
this is not the case (and all “early birds" arriving before opening enter service in random
order). Since from the social point of view the option of being an early bird will never be
exercised, we will assume that this option is not allowed.

Clearly, customers are involved in a non-cooperative game and one looks for a

"Later papers. e.g., [20] and [14], also added the feature of tardiness costs, reflecting how late service is
rewarded in comparison with service that is granted at some ideal time. usually at = 0.
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symmetric equilibrium strategy that prescribes (a possibly random) time of arrival. This
problem is solved in Hassin and Kliener [11] for the case of a Poisson distributed number
of arrivals. The next question is what is the socially optimal symmetric arrival strategy. As
it turns out, this is a harder question and only numerical results are reported in Hassin and
Kliener [11]. Note, however, that under this criterion the regime used is irrelevant (as long
as it is work-conserving and non-anticipating).

7.1. Social optimization in the case of two customers

The following theorem shows that the symmetric socially optimal strategy in the case
of two customers prescribes them to arrive with positive probabilities at time 0 and time
T, and with uniform density at any pointin (0, 7). This result, which we analytically prove
using the equal SCoD property, resembles the numerical results for the case of Poisson
distributed number of customers reported in Hassin and Kliener [11].

Theorem 7.1. The unique symmetric socially optimal strategy in the two-customer strategic
timing of arrival model is as follows. There are two atoms of size 1/ (ul +2) each at 0
and T, and there exists a uniform density of p/ (ul' +2) along (0,7).

Proof. We begin the proof by stating and proving the following.

Lemma 7.2. Consider a strategy S that has atoms at the points 0,1,1,,....T"
0<t <t,<...<T', of sizes (possibly zero) p,, Py P> Pry respectively, and some
density elsewhere (again, possibly of size zero) of f(x), xe[0,T]. Of course,
Po+Pr+ Z P+ J‘; Crf (x)dx=1. Then, the social cost when one customer uses a pure

strategy 1, that prescribes arrival at time t €[0,1] with probability one, while the other
customer uses strategy S equals

SCyyy (1,8) = =+ ~ By (1) (18)
' Hoou

,Ps(t) — e—‘mpo +e—‘m_'T—.r)pT + ze_‘ulr_rflpr + J‘ine_ﬁlr_x'f(x)alx- (19)

Proof. The first term of (18), 2/ x, is the sum of the two expected service times. Thisis a
cost that the two customers incur regardless of the strategies used by them or the process
progression. Additional cost in the form of queueing time is incurred if and only if the two
customers find themselves in the system at the same time. Conditioned on this event, due to
the memoryless property of the exponential distribution and regardless of the service regime,
an additional queueing time of exponential length with mean 1/ 4 is incurred. 1t is therefore
left to show that 7, () is the probability of the event that the two customers find themselves
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in the system at the same time. Conditioned on the event that the customer who uses strategy
S arrives at time x €[0,77], the probability we are after is the probability that the service
time of the customer who arrived first is greater than |7— x|, which equals ¢ . Finally,
integrating with respect to the distribution prescribed by strategy S completes the proof.
From Lemma 7.2 (see (18)) we learn that SCoD(7,5) =SC,,, (1,5)—SC,(S) is a
function of ¢ only through 7.(). Hence, the optimality condition in Corollary 6.2 is
equivalent to that an optimal strategy S is such that
searg min P (1), s ¢ support(S”). (20)

t=[0.7]

Straightforward differentiation of (19) shows that for any strategy S

-

%ﬁ(f)=#27%(r)—2pf(r), 1e[0,7]. 1)

A conclusion from (21) is that if § is an optimal symmetric strategy, then f(¢) > 0 for all
t€(0,7) since otherwise, namely, if f(7) =0 along some interval, a point x in the interior
of that interval is such that x ¢ support(S) but comes with a lower value of 7,
contradicting (20). This is the case since along such an interval, P () is strictly convex as
d’P.(t)/dt’ = ;1’P.(t)>0 . As a consequence, the support of the equilibrium strategy
contains all points in [0,7'], which means that 7;(f) is constant and, in particular,
d*P,(1)/dt* =0 forall 1€[0,7]. Equation (21) then implies that f(7) is constant as well.
Moreover, F.(f), being constant, must be continuously differentiable, which excludes the
possibility of atoms in the interior of (0,7, ie, P, =D, =...=0 . The condition
P(0)="P(T) implies that p, = p, = p for some 0< p<1/2 and f(t)=(1-2p)/ T .
Finally, (21) evaluated at r = 0 along with d*P,(r)/dt’ =0 imply that

LR©O=10) (22)

This means that p uniquely solves

H —ur r — 1- 2p _ 1- 2p
— +e + e ——dx |= —_,
2 [‘D Pl T

which implies that the strategy S such that p, = p, =1/(ul'+2) and f(1)= u/(ul +2)
is the unique symmetric socially optimal strategy.

Remark 7.3. The expected waiting time under the socially optimal strategy equals
SC,,,(S")/2 and since 0 e support(S"), it also equals
. 1 7.0
SC,,(0,8)/2=—+—
‘ u o 2u
1 @1, 1

Y
2

w2
where for the penultimate equality we use (22). This value is of course strictly less than the
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corresponding equilibrium waiting time under FCFES, which is calculated in Haviv and
Ravner [18), and it equals 1/ pu+1/(’T + ).

7.2. Regulation in the case of two customers

As expected, in this decision model with externalities that vary with the arrival time,
the equilibrium and the socially optimal strategies do not coincide. But there is an exception
to this rule, as we show in the next theorem. This is the case where the number of customers
equals two and the service regime is PS (or random with preemption (ROP)®). In particular,
under these two regimes the system is self regulated.

Theorem 7.4. When two customers decide when to arrive in the interval (0,1 the
symmetric socially optimal strategy coincides with the symmetric equilibrium strategy
under the PS and the ROP regimes.

Proof. A direct approach will be to compute the equilibrium strategy under PS and ROP
and show that it is the same strategy described in Theorem 7.1. We would like to provide a
more qualitative proof that uses the following observation. This observation in fact holds
for any number of customers and hence has an interest of its own. It is stated and proved
accordingly.

Observation 7.5. Consider a time period between two departure or arrival events that
corresponds to a time period where the number of customers in the system is constant. Fix
that number at k and assume that k > 2. Under the PS regime the queueing time of any
customer among these k customers, and during this period, equals the externalities she
imposes on the other k-1 customers.” Likewise, under the ROP regime, the expected
queueing time of any customer equals the expected externalities she imposes on others.

Proof 1. Assume that the period under consideration is of length £ and tag one customer
among the & present. The amount of service she gets under PS during this period is (/&
and the rest of the time, ((k—1)/k, is therefore her queueing time. Moreover, in the
fraction of time in which this customer is in service, all other £ —1 customers wait, causing
an additional aggregate queueing time of /(k—1)/k . Likewise, under ROP, in the last
event (departure or arrival) prior to this period a lottery is performed to decide who will be
the one to enter service. The probability that the tagged customer will not be this one, and
hence will have to wait during this period, is (K —1)/k and hence her expected queueing

fUnder this scheme random lotteries for who receives service next are performed only upon arrival and
departure instants.

“In the case of a PS model, queueing is referred to as the slowdown due to having to share the server with
others. For example, if three customers share the server for three mins, it is as if each one of them were
queueing for two mins and receiving one minute of service.
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time is £(k—1)/k. With the complementary probability, 1/k, she will be the one to
receive service and all £ — 1 others will wait for £ time units, causing an expected aggregate
queueing time of ((k—1)/k.

Proof 2. Consider two customers, A and B, who are together for some time interval in a PS
system. During this time interval, A has been in service exactly for the same length of time
as B, and this is regardless of how many additional customers are present. Likewise, in the
case of a ROP regime: A may affect B only if he wins the lottery deciding who enters next
before B does, an 0.5 probability event, and this is regardless of how many earliest
lotteries they both have lost to others. The same extra queueing time will be inflicted on A
if B wins this lottery first.

It is tempting to deduce from Observation 7.5 that the overall queueing time of a
customer in this model equals the overall externalities she imposes on others. However, this
deduction is not true due to the fact that a customer might cause additional waiting of others
during time periods after her departure. This is the case when her arrival time affects the
queue length also after her departure, which in turn affects the waiting time of future arrivals.
Note however that this scenario is possible only if the number of customers is greater than
two. Hence, in the two-customer case we have the following:

Corollary 7.6. Assume that the number of customers equals two and let O(S,,S,) and
E(S,,S,) be the expected queueing and expected externalities associated with a customer
who uses strategy S, when the other customer uses strategy S,. Then, for any strategy
profile (5,,5,),

O(S,,5,) = E(S,,5,).

Hence, the resulting individual cost under this profile is

2f‘u+Q(Sl"SZ)+E(S]'vSQ) — SC{'I,I}(SI:!SQ)
2 2 '

1 u+0(8,.8,) = (23)

We now conclude the proof of Theorem 7.4. The symmetric equilibrium strategy is
S, such that if used by one customer, it is a best response for the other customer.

[

Specifically,
S, earg mgn{ 1/ u+0O(S,5,)}.
On the other hand, Corollary 7.6 (see (23)) implies that this condition is equivalent to
SC,,,(S.8,)
2

that, in this case, uniquely characterizes the symmetric socially optimal strategy.

S, earg msi“{ }=arg min SCoD(S, S,),
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8. Concluding Remarks

The Nash equilibrium solution concept provides a systematic way of dealing with non-
cooperative games. In particular, when dealing with symmetric games, we look for a
strategy such that when it is used by all, it is also one’s best response. Despite its seemingly
simple definition, characterization of the equilibrium strategy requires a thorough
examination of individual incentives and rewards. Indeed, most if not all of the literature on
strategic behavior in queues analyzes such symmetric games in the queueing context
through the lens of the Nash equilibrium concept. Many of those studies also deal with the
socially optimal counterpart, that is, a symmetric strategy profile that minimizes the
aggregate cost among all players. This problem is typically approached in a straightforward
way: write the social cost as a function of the symmetric strategy and optimize over the
strategy space. In this paper we introduce the social cost of deviation method, which, unlike
the traditional methods, preserves the incentives and rewards nature of each game. We show
that the characterization of the socially optimal symmetric strategy is similar to that of the
Nash equilibrium strategy, but instead of looking at the incentives of the individual we now
look at those of society. In particular, the socially optimal strategy is such that when it is
used by all, the social cost of deviation from it to any strategy is nonnegative. This
characterization provides a unified approach to social optimization in symmetric games.
Moreover, as exemplified in the proof of Theorem 7.1, the social cost of deviation may lead
to a computational method for the socially optimal strategy in problems that otherwise
require infinite-dimensional optimization (e.g., when the strategy space is all the
distributions over a closed interval).
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