
1. Introduction
Markov-modulated processes are popular because they can be used to describe the 

evolution of simple systems under conditions that vary in time. The fluid flow processes 
presented here have long found applications as models for dams and reservoirs (Loynes 
[42]), and for buffers in telecommunication systems, Anick et al. [2] being a famous early 
paper. It is in the latter context that the term fluid queue was coined. Later, the domain of 
applicability of fluid flows has been extended to risk theory (Avram and Usábel [5], Badescu
et al. [6]), operations management (Bean et al. [12]) and others. 

Fluid flows are two-dimensional processes { ( ), ( ) : }X t t t  , where { ( )}t is a 
continuous-time, irreducible Markov chain on some finite state space = {1, , }m , and 

( )X t takes values in  under the control of  . In the simplest form,  

( )0
( ) = (0) d ,

t

sX t X c s   (1) 
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Figure 1. Sample trajectory of a fluid flow (top) and of its controlling Markov chain 
(bottom). The fluid rates vector is  so that different states 
correspond to different slopes. 

with = [ : ]ic ic  being a vector of arbitrary real constants. The component X is called 
the level,  is called the phase, and the level is a piecewise-linear function, with constant 
slope over intervals when the phase is constant. An example with four phases is shown on 
Figure 1. 

It will be useful in the sequel to partition  into three subsets according to the sign of 
the rates ic :

0= { : > 0}, = { : < 0}, = { : = 0}.i i ii c i c i c          (2) 

In many applications, X is a model for a physical quantity (water in a reservoir, 
packets in a buffer, energy level of a battery, etc.) and may not take negative values. In such 
cases, one might assume that whenever the level becomes equal to 0 and the rate is negative, 
the level remains equal to 0 until there is a change to a phase with positive rate. This is 
illustrated in Figure 2: at time 1 the fluid hits level 0, the phase is equal to 1 with 1 = 0.8c  .
The fluid remains equal to 0 until time 1 where the phase process switches to state 3, with 

3 = 2c .
Such a mechanism is justified by the fact that the rates ic often result from the 

superposition of different effects, some which remove fluid from the buffer and some which 
add fluid. If at some time the buffer is empty and the output rate remains greater than the 
input rate, fluid does not accumulate and the buffer remains empty. 
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Figure 2. Sample trajectory of a regulated fluid flow. 

Formally, we define the regulator  and the fluid queue 
(the regulated fluid flow) is { ( ), ( )}Y t t , with  

( ) = ( ) ( ).Y t X t R t  (3) 

In the first part of this paper, we focus on characterising the stationary distribution of 
the regulated fluid queue, when it exists. Although the details of our presentation are very 
much inspired by Ramaswami [44] and da Silva Soares and Latouche [22], we follow a 
slightly different path and give explicit reference to semi-regenerative processes (Çinlar [20, 
Chapter 10]); this allows us to interpret in a unified manner the ad-hoc analysis of several 
published variants of our basic model. 

Let us assume that (0) = 0Y and define the sequences { : 0}n n  and { : 1}n n  as
follows:  

0 = inf{ > 0 : ( ) > 0},t Y t

1= inf{ > : ( ) = 0}, = inf{ > : ( ) > 0}n n n nt Y t t Y t   

(see an illustration in Figure 2). It is easily seen that { : 1}n n  is a set of regenerative 
epochs for the process { ( ), ( )}Y t t :

• { ( ), ( )}n nY    is a Markov chain on the state space {0}  as the fluid is reaching 
down to level zero at these epochs, in a phase of  ,

• the process over the interval [ , )n  is independent of the process over the interval 
[0, )n , given ( )n  , for all n , and  

• the distribution of the process over the interval [ , )n  , given ( ) =n s  , is the same 
as the distribution of the process over the interval 1[ , )  , given 1( ) = s  for all n
and s  .

In consequence, we may immediately write that the stationary distribution
, defined as1

                                                       
1We use boldface letters to represent vectors, and capital letters for matrices. 
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is given by  
 (4) 

where   
•  is the stationary probability vector of {( ( ), ( ))}n nY    ,
• ( )M x is an  by  matrix, with components ( )ijM x equal to the conditional 

expected sojourn time of ( ( ), ( ))Y t t in [0, ] { }x j  during a regeneration interval 
1[ , )n n   , given that ( ) =n i  , and  

• , where  represents a vector of ones; the components of  are the 
conditional expected lengths of intervals between regeneration points, given the 
phase at the beginning of the interval.  

We give in Section 2 a few basic characteristics of the process at level 0. The vector  is 
determined in Section 3, where we define and analyse two important first passage 
probability matrices, and ( )M x is determined in Section 4 through the number of crossings 
of a given level during regenerative intervals. The results in these two sections are brought 
together in Section 5 to give the stationary distribution of the fluid queue. 

The key matrices defined in Sections 3 and 4 have very distinct physical significance 
but they are algebraically closely related. We show this in Section 6, using results originally 
proved in Rogers [46]. 

In Section 7, we characterise the distribution of first passage times to a given level, and 
we analyse in Section 8 the first exit from an interval. The two sections come as 
complements to Section 3. 

In many applications, in particular in telecommunication modeling, the buffer level is 
not allowed to grow without bounds. Often, the evolution of the process changes as the 
upper or lower boundary is reached. These, and other modifications of the basic fluid flow 
model, are briefly discussed in Section 10 where we show how the regenerative approach 
may be readily adapted to more complex assumptions. 

One of the nice features of the matrix-analytic approach is that computational 
algorithms are easily constructed, following the development of the theoretical results. As 
an illustration, we give in Section 9 two of the simplest, and yet very efficient, algorithms 
for the numerical computation of the key matrix  identified in Section 3. 

Most of the results presented here have appeared earlier. For that reason, we give 
explanatory justifications mostly, and we refer to published sources for formal justifications. 
In a few cases, however, we give formal proofs: in Section 8 we give a new treatment of 
escape probabilities for null recurrent processes (Lemma 8.3 and Theorem 8.5), and we 
offer with Theorem 9.1 a novel justification for a nice computational procedure for  .
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2. Preliminaries
We partition the generator Q of the Markov process { ( ) : }t t  in a manner 

conformant to the partition (2) of  and write, possibly after a permutation of rows and 
columns,2

0

0

0 0 00

= .
Q Q Q

Q Q Q Q
Q Q Q

    

    

 

 
 
 
  

 (5) 

We assume that Q is irreducible. We also define the diagonal matrix C of fluid rates, 
, and we partition it as  

= .
0

C
C C





 
 
 
  

The fluid process { ( )}X t moves up and down in a random manner but its general direction 
is determined by the stationary drift , where  is the stationary probability vector 
of Q : , . If > 0 , the process eventually drifts to  , that is, 

( ) =limt X t  , if < 0 , then ( ) =limt X t  ; in both cases the process is transient. If
= 0, the process is null-recurrent and limsup ( ) =X t  while liminf ( ) =X t 

(Asmussen [4, Page 314, Proposition 2.10]). 
Things are slightly different for the regulated process { ( )}Y t . If < 0 , the process 

repeatedly alternates between intervals of time where ( ) > 0Y t and intervals where 
( ) = 0Y t . As we find in Section 6, the length of each cycle has finite expectation, the 

regulated process is positive recurrent, and we may determine its stationary distribution. If 
> 0, then ( )Y t might not return to level 0 and so the process is transient. Not surprisingly, 

it is null-recurrent if = 0 .
We define = ( )n n   , 1n  . The process { }n of the phases visited at epochs of 

regeneration is a Markov chain on the state space  by definition, and its transition matrix 
is H , with 

 1 1P[ , | ],i j n n n nH j j          ,   in , .i j 

To determine H , we split the interval 1( , ]n n   in two and we condition on the phase 
occupied at time n . Thus, H is the product  

= ,H   (6) 
where
                                                       
2We write  for the subvector  of any vector , and  for the submatrix of any matrix 
at the intersection of the rows and columns in . Other sub-vectors and sub-blocks are similarly defined. 
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1 1

P[ , ( ) | ],                , ,
P[ , | ( ) ],          , .

ik n n n n

kj n n n n

k i i k
j k k j

    
    

 

   

        
        

 
 

 
(7)

The matrix  is easily determined: ( )t remains in 0   during the interval ( , )n n  ,
and thus  

 (8) 

(Latouche and Ramaswami [41, Section 5.5]). To determine the matrix  requires more 
effort, and we devote Section 3 to the determination of its characteristic equation. Once 
is known, the vector  in (4) is determined by the system , .

In a similar manner, we decompose ( )M x as ( ) = (0) (0, ]M x M M x , where (0)M
is the expected time spent at level 0 between the epochs n and n , and (0, ]M x is the 
expected time spent in the semi-open interval (0, ]x . We decompose (0)M as  

and immediately note that  as the fluid queue does not spend any time at level 
0 in a phase of  . Furthermore,  

 (9) 

see [41, Section 5.5]. The second term in ( )M x is equal to  

 (10) 

where  is the matrix of expected times spent in (0, ]x during the interval of time
1( , ]n n   . It is determined in Section 4. 

3. First Passage Probabilities 
We deal in this section with the fluid flow model { ( ), ( )}X t t without boundary. Its 

transition structure is independent of the level and so we shall not always pay close attention 
to the exact value of ,X  but be more interested in differences of level. For instance, the 
matrix  defined in (7) might have been defined as  

= P[ < , ( ) = | (0) = ], ,ij j i i j         

independently of (0)X , where = inf{ > 0 : ( ) = (0)}t X t X is the first return time to the 
initial level, starting in a phase of  .

Furthermore, let  
= inf{ : ( ) < (0) }x t X t X x   , (11) 

be the first passage time to level (0)X x , for > 0x , and denote by ( ) = ( )xx    the 
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value of the phase when (0)X x is reached for the first time.3 For (0)  in  , the 
process { ( ) : 0}x x   is a continuous-parameter Markov process on the state space  ,
and there exists a matrix U  such that  

( ) = P[ < , ( ) = | (0) = ], , .Ux
ij xe x j i i j    

 

As Q is irreducible,  is strictly positive, meaning that > 0ij for all i in , j in  .
To see this, imagine a trajectory of positive probability such that, starting from (0, )i , the 
process returns at 0 for the first time in phase ,j  in finite time. A formal proof is in Govorun 
et al. [30, Lemma 4.3], or Guo [33, Theorem 5]. In consequence, the off-diagonal elements 
of the generator U are all strictly positive. We discuss at greater length the algebraic 
properties of U and  in Section 6, but mention here the most important ones, in relation 
to the stationary drift  :   

• if 0  , then  and , that is,  is stochastic,  
• if > 0 , then  and , that is,  is substochastic.4

Finally, we define the matrix  

0 1
00 0 0

0
= ( )

Q Q Q
T Q Q Q

Q Q Q
   

 
  

   
       

   
 (12) 

indexed by the states in    and we partition it as  

= .
T T

T
T T
 

 

 
 
 

This is the generator of the censored process { ( )}t observed only during the intervals of 
time spent in    .

Theorem 3.1. The matrix U is given by 
1 1=| | | | ,U C T C T 

      (13) 

and  , as defined in (7), is the minimal nonnegative solution of the quadratic Riccati 
equation

1 1 1 1| | | | = 0,C T C T C T C T   
            (14)

where | |C  is the matrix of absolute values of the elements of C .

We give here a high-level justification, a formal proof is in Ahn and Ramaswami [1] 

                                                       
3As the trajectory of ( )X t  is continuous, we might have defined = inf{ : ( ) = (0) }x t X t X x   , but the 
strict inequality in (11) will be useful in Section 8. 
4With  and  two vectors on the same set of indices, we write  if  for all index i . 
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and da Silva Soares and Latouche [24]. To determine ,  it is simpler to use the censored 
process on    since there is no change in the level while   is in 0 ; that is why we 
use in (14) the generator T of (12) instead of the generator Q of (5). 

Furthermore, instead of tracking the evolution of the phase process in time as one might 
be tempted to do, we track its evolution over changes of the level. The parameters | |ic , for 
i     , are conversion rates of time to fluid and their reciprocal 1| |ic  are conversion 
rates of fluid to time, so that the matrix 1| |C T indicates how the phase evolves as the fluid 
level is increasing or decreasing. 

With this in mind, we write  

 (15) 

The justification goes as follows (see the illustration in Figure 3). The process starts in a 
phase of  , and we assume without loss of generality that (0) = 0X . The factor 
in the right-hand side of (15) is the probability that the phase remains in  until the fluid 
has increased up to level . The factor  is the probability that between the levels 

 and , the phase moves to  and starts to decrease. The factor  is the 
probability that the fluid eventually goes down to level 0. Level  is reached at some 
unspecified moment , and the process moves without constraint between  and  .

We pre-multiply both sides of (15) by 1C T
   integrate by part, and find  

1 1 = 0.C T C T U 
       (16) 

This is a nonsingular Sylvester equation (Lancaster and Tismenetsky [37]) and we may 
characterise  as the unique solution of (16) if U is known. 

To prove (13), we write  

= P[ ( ) = | ( ) = ] ( ),ijU h u h j u i o h   
1 1= (| | ) (| | ) ( )ij ijC T h C T h o h 

       (17) 
for i , j in  . The first term is the probability that  changes from i to j , the second 

     
Figure 3. The fluid increases and reaches  at some unspecified time .
Between  and  the fluid moves without constraint.    
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term is the probability that  changes from i to a phase in  at some level u and is in 
phase j when the process later returns to level u . We illustrate this in Figure 4, where we 
plot the trajectory of the process from level  to level 0, and draw with solid lines the part 
that corresponds to ( )x  . At level  there is a simple change from phase 2 to phase 1; 
at level  there is a change from phase 2 to phase 4 in  and upon return to level  the 
process is in phase 1. 

The Riccati equation (14) is obtained by replacing in (16) U by its expression in (13). 
Over the years, very efficient algorithms have been developed to solve (14), we describe 
two of these in Section 9. 

Two other matrices, U and  , may be defined at this stage. Let 
= inf{ : ( ) > (0) }x t X t X x    be the first passage time to level (0)X x , for > 0x , and 

denote by ( ) = ( )xx    the value of the phase when level (0)X x is reached for the first 
time. The matrix U is the generator of { ( )}x  and  is the matrix of first passage 
probability back to the initial level, given that the phase at time 0 is in  :

 
We easily adapt the argument in Theorem 3.1 to prove the following. 

Corollary 3.2. The matrix U is given by 

 (18) 
and  is the minimal nonnegative solution of the equation  

 (19) 

Furthermore,  <1 1 and  <U1 0 if < 0 , while  =1 1 and  =U1 0 if 0  .

Figure 4. The sample path of ( )X t from  to 0 is reproduced from Figure 3, the 
path of ( )x  corresponds to the solid downward segments,  and  are two of 
the levels where the value of ( )x  changes.
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4. Number of Crossings 
As a preliminary step to determining the expected sojourn time  in (0, ]x during

an interval 1( , ]n n   , we analyse the number of times the fluid crosses a given level during 
a regenerative interval. We define ( )ijN x to be the expected number of times 
( , ) = ( (0) , )X X x j  during the interval (0, ] , given that (0) = i , for i and j in  .

Theorem 4.1. The matrix ( )N x is given by ( ) = KxN x e , where 
1 1= | |K C T C T 
      (20) 

is a matrix indexed by  .

The formal proof is given in Ramaswami [44] and proceeds as follows.5 Assume 
without loss of generality that (0) = 0X , take x and , and count the expected 
number of visits to , starting from (0, )i , before the first return to level 0. We 
group the visits to  into subintervals between successive up-crossings of level x ,
and write that  

Where  is the expected number of visits to  between two 
successive visits to level x , starting from ( , )x k . Remember that it is the distance 
between the target  and the starting level x that matters, not the specific location of 
the latter. Thus,  and so the equation above is also written as 

. From the semi-group property, we conclude that there exists a 
matrix K such that ( ) = KxN x e .

Next, we approximate ( )Kh
ije for h small and  as  

( ) = ( )Kh
ij ije K h o h

1 1 1
00 0

0

= (( ) )i ij i ik kj
k

c Q h c Q Q Q h  




 


1 1(1 ) | |i ii i jc Q h c Q h 

 

     
 

1 1 1
00 0

0

(1 ) | | (( ) ) ( ).i ii i k kj
k

c Q h c Q Q Q h o h  


 

       
  

The first two terms are about the process being in phase j at the first crossing of level h ;   
• the first is the probability that during the interval of time 1

ic h the phase process 
changes from i to j and is still in j when the fluid crosses level h ;

• the second term is the probability that during that interval of time, the phase switches 
                                                       
5The argument is similar to the one used in Latouche and Ramaswami [41, Theorem 6.2.7] in the context of 
Quasi-Birth-and-Death processes. 
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to k in 0 at some unspecified level below h , remains at that level until there is a 
jump to j , and is still in j when the fluid crosses level h .

The next two terms cover the circumstances where the process does not leave phase i
before crossing level h , returns to level h in some phase  in  , switches to phase j
during the interval of time 1| |c h

 and eventually crosses level h in phase j . The ( )o h
term captures the negligible probabilities of crossing level h more than once. Simple 
manipulations give us  

A similar argument holds for =i j and so is (20) justified. 
We partition the matrix  in three blocks, corresponding to the three subsets  ,

  and 0  of phases, and we deal with each one separately. 

Theorem 4.2. The matrix of expected sojourn times in (0, ]x during a regenerative interval 
is

with  
  (21) 

  (22) 

 (23) 

where .
Proof. A formal proof of (21, 22) is given in Latouche and Nguyen [38], we give here 

a heuristic argument, and we give a justification for (23). 
For i , j  in  , we argue that  

To see this, we interpret 1djc u as the expected time spent by X in ( , d )u u u each time 
there is a visit to ( , )u j , and multiply this by the expected number ( )ijN u of such visits, so 
that 1( ) dij jN u c u is the total time spent by the process. There only remains for us to integrate 
over the interval (0, )x and use Theorem 4.1. 

Next, we define the matrix ( )N x of expected number of down-crossings of level x
in a phase of  . As (0) = 0 < ,X x  of necessity each down-crossing of level x is preceded 
by an up-crossing of that same level. So, if we condition on the phase at the up-crossing, we 
find that  

( ) = ( ) , ,ij ik kj
k

N x N x i j 
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and (22) is proved by repeating the argument of (21). 
Finally, let us use the expression excursion to 0 for intervals of time spent in 

0(0, )x   and separated by visits to (0, )x     . Equation (23) expresses  as 
the product of the expected number of excursions by the time spent in individual phases 
during excursion. Indeed, 0Q and 0Q are the matrices of transition rates from  and 
to 0 , and 1 1( , )[ | | ]K x C C 

  is the matrix of expected time spent in the states of 
(0, )x     . Thus, the component ( )ikN x of the product  

01 1

0
( ) = ( , ) | |

Q
N x K x C C

Q
 

 


 
     

 


is the expected number of excursions that start in phase .k  As 1
00( )kjQ is the expected time 

spent in j during an excursion which starts in ,k  this proves (23).               
As we shall see in Section 6, all the eigenvalues of K are in 0 , that is, they have a 

negative real part. If < 0 , the real parts are all strictly negative, otherwise K has one 
eigenvalue equal to 0, the others being in <0 . With this, we may express the integral 

0
d

x Kue u  as follows.   
• If < 0 , then  

 (24) 
• if 0  , then  

where  and  are the normalised right- and left-eigenvectors of K for the eigenvalue 0, 
and #K is the group inverse6 of K .

In the same manner as we defined  and , we may define *( )N x as the number of 
crossings of level (0)X x in a phase of  , starting from a phase in  , before the first 
return to level (0)X , and we have the following corollary to Theorem 4.1: 
Corollary 4.3. The matrix *( )N x is given by *( ) = KxN x e , where 

  (25) 

is indexed by  . Furthermore, the eigenvalues of K are in <0 , with the exception of one 
eigenvalue equal to 0 if 0  .

5. Stationary Distribution 
We collect the results obtained in the preceding sections and we express as follows the 

stationary distribution of the fluid queue, when it exists. 

                                                       
6The group inverse  of  is the unique matrix such that , . See Campbell and 
Meyer [19, Chapter 7]. 
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Theorem 5.1. If < 0 , the regulated process ( ( ), ( ))Y t t has a stationary distribution, 
given by 

where

 

  (26)

and c is the normalising constant, with  

Proof. The expression (26) for  results from Theorem 4.2 and Equation (24). 
Furthermore, the vector  of conditional expected duration of a regeneration interval, 
given the initial phase, is given by  

 (27) 

by (26). The normalising constant c equals  by (4); simple calculations complete 
the proof. 

The stationary distribution appears under various forms in the literature (Asmussen [3], 
Govorun et al. [30], Ramaswami [44], Rogers [46]); the matrix  is a common feature 
in papers that rely on matrix-analytic methods, the vector of probability mass at zero and 
the left-factor of  are given very different expressions, depending on the specific 
approach followed by the authors. 

6. Wiener-Hopf Factorisation 
The matrices ,U  and K defined in Sections 3 and 4 are related in many ways. 

Obviously, U and K are determined by  through (13) and (20), respectively, but  may 
be seen as a function of U by (16) and we might combine (14) and (20) to write  

1 1| | = 0,C T K C T 
     

from which we conclude that  is a function of .K  There exist also numerous relations 
between the 3-tuples ( , , )U K and   ( , , )U K , as we briefly discuss below. 
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The starting point is the Wiener-Hopf factorisation  

 


1 0=
0

I I UC T
I I U


      

     
       

 (28) 

proved in Rogers [46], with  

= .
C

C
C





 
 
 

Equation (28) may be proved by direct verification, starting from the Riccati equations (14) 
and (19), and the expressions (13) and (18) for U and U . The equation below may also be 
proved by direct verification:  

 (29) 

An immediate consequence is that U and U on the one hand, K and K on the other hand, 
share the eigenvalues of 1 .C T  We denote by m and m respectively the number of 
phases in  and  , and we denote by { :1 }i i m m     the eigenvalues of 1C T ,
labeled in increasing values of their real parts. 

Theorem 6.1. The eigenvalues m 
and 1m 

 are real, and are distinct from the others: 

1 1 1 2Re( ) Re( ) < < Re( ) Re... . . (. ).m m m m m          
      (30) 

Furthermore, i , 1 i m   are the eigenvalues of K  and also the eigenvalues of U ,
while 1m 

, ... m m  
are those of U and of K . Finally,   

• if < 0 , then 1< 0 =m m   
,

• if = 0 , then 1= 0 =m m   
,

• if > 0 , then 1= 0 <m m   
.

Details are given in Govorun et al. [30]. The main properties are summarised in Table 1. 

Table 1. Crossing probabilities, and maximal eigenvalues of U , K , U , and K in
relation to the asymptotic drift  .

drift  < 0 0 > 0
1 1 1 < 1
1 < 1 1 1

U , K 0 0 < 0
U , K < 0 0 0
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Actually, K and U are similar matrices, and K is similar to .U This is easy to show 
if the stationary drift is different from 0, for we find from (28, 29) after some simple 
algebraic manipulation that  

 (31) 

If 0  , then both  and  are strictly sub-stochastic matrices, I  and
I    are non-singular, and we may write  

  1= ( ) ( )U I K I   ,

   1= ( ) ( )K I U I    ,

which shows that K is similar to U and K is similar to U .
If = 0,  however,  =1 1 and  = ,1 1 I  and I  are both singular, 

and the argument above fails. Instead, one must develop the Jordan chain argument from 
the proof of Govorun et al. [30, Lemma 4.6]. 

As a matter of fact, we often find that = 0  is a case that presents additional 
difficulties. This will be seen in Theorem 8.5 about escape probabilities — that is but one 
example. Moreover, the convergence of computational algorithms is much slower (Guo 
[34]).

7. First Passage Times 
The matrix H analysed in Section 2 gives us the joint probability that a regeneration 

interval is finite, and the phase at the end of the interval. Here, we are interested in the 
distribution of the length of the regeneration interval, that is, the distribution functions  

1 1( ) = P[ , = | = ],ij n n n nH t t j i     

for i , j in  . Using the same partition that gave us (6), we write ( )H t as the convolution 
product ( ) = * ( )H t t  , with  

( ) = P[ , ( ) = | = ], ,        ,ik n n n nt t k i i k           

1 1( ) = P[ , = | ( ) = ], , .kj n n n nt t j k k j            

As usual, it is easier to characterise the regenerative intervals through their Laplace-Stieltjes
transforms  


0

( ) = d ( ),st
ij ijH s e H t

   (32) 

and to write   ( ) = ( ) ( )H s s s  where ( )s and  ( )s are the matrices of LS transforms of 
( )t and ( )t , respectively. It is well-known that LS transforms may be interpreted in 

probabilistic terms through the introduction of an exponential random variable V with
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parameter s , independent of the fluid flow process: we rewrite (32) as  


1 1( ) = P[ , = | = ],ij n n n nH s V j i     

and similarly  
 ( ) = P[ , ( ) = | = ],ik n n n ns V k i      


1 1( ) = P[ , = | ( ) = ].kj n n n ns V j k       

At this point, it is easy to verify that ( )s and  ( )s are given by slight modifications of 
(8) and (14):  

 (33) 

and  ( )s is the minimal nonnegative solution of  

  (34) 

where
0 1

00 0 0
0

( ) = ( ) .
Q sI Q Q

T s sI Q Q Q
Q Q sI Q
   

 
  

   
          

The Riccati equation may be solved for any given s by the same algorithms as discussed in 
Section 9, and this makes it feasible to compute the distributions themselves by numerical 
inversion procedures. 

Moments of first passage times are obtained by taking the derivatives of 
  ( ) = ( ) ( )H s s s  and evaluating it for = 0.s  Derivatives of ( )s are easily obtained 
from (33) but those of  ( )s are more involved, as shown in Bean et al. [14], and are 
expressed as solutions of nonsingular Sylvester equations. The first moment may be 
obtained in a more straightforward manner, as we show in (27). 

8. Escape from an Interval 
Section 3 is about the distribution of the phase upon the first passage of ( )X t to a given 

level. Here, we deal with the first passage to the boundary of a finite interval: assuming that
(0) = 0X , we look for the distribution of the phase when the level escapes for the first time 

from the interval ( , )a b , with a and 0b  .
We define as follows the matrices ( , )a bA and ( , )a bB indexed by   and   ,

respectively:  
( , ) = P[ < , ( ) = | (0) = 0, (0) = ],  , ,a b
ij a b aA j X i i j      

  

( , ) = P[ < , ( ) = | (0) = 0, (0) = ], , .a b
ij b a bB j X i i j      
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The matrices are partitioned into the usual subblocks:  
( , ) ( , )

( , ) ( , ) ( , ) ( , )

( , ) ( , )
0 0

= .

a b a b

a b a b a b a b

a b a b

B A
B A B A

B A

 

 

 

 
     
  

If (0)  is in 0 , the process remains at level 0 for a while, before jumping to a phase in 
either  or .  We condition on the first phase visited either in  or  and we find 
that  

( , ) ( , )
( , ) ( , ) 1
0 0 00 0 0 ( , ) ( , )= ( ) .

a b a b
a b a b

a b a b

B A
B A Q Q Q

B A
 

   
 

 
        

 
 (35) 

Remark 8.1. We see here why we defined x
 in Section 3 as = inf{ : ( ) < (0) }x t X t X x   .

If we had defined it as = inf{ : ( ) = (0) }x t X t X x   , then (35) would not have held for 
= 0.a Similarly, it would not have held for = 0b  if we had defined 
= inf{ : ( ) (0) }x t X t X x    .

We need the following lemma to determine the remaining entries of ( , )a bB and ( , ).a bA

Lemma 8.2. For (0) in  or , the escape probability matrices are solutions of the 
linear system 

( , ) ( , )

( , ) ( , ) ( ) = ,
a b a b

a b a b

B A
I

B A
 

 

 
 

 
   (36) 

where

 

( )

( )

0
= ,

0

U a b

U a b

e

e





 
 
  





 
= .

Ub Ua

Ub Ua

e e

e e

 
 
  



Proof. Assume (0) is in  . We have  

 (37) 

Indeed, the left-hand side gives the distribution of the phase when the process has moved 
up from level 0 to level b , it is decomposed in the right-hand side as the sum of the 
probability that the process reaches b without going down to a and the probability that 
it goes down to a first, then returns to level a from below, and eventually goes up by 
a b units, from a to .b  Similarly,  

( , ) ( , ) ( )= .Ua a b a b U a be A B e 
     (38) 
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Equations (37, 38) form the first row of the system (36). The argument for the second row 
is similar.            

If 0  , then (36) is nonsingular and it has a unique solution. The reason is that either 
( )U a be  or   ( )U a be  is substochastic, and so the series  is converging to 

1( )I  (see da Silva Soares and Latouche [24] for details). If = 0 , then both ( )U a be 
and   ( )U a be  are stochastic matrices, I   is singular and we need to add one equation. 

Equation (39) is one such choice, as we prove in Theorem 8.5. This equation is 
identical to the one given for Markov-modulated Brownian motion in Ivanovs [36] in a 
comment after Theorem 3.1, referring to a result obtained in D’Auria et al. [27, Section 7] 
by a spectral decomposition argument. The proof given here is based on the analysis of the 
stochastic process itself, it is new and for that reason we give all technical details. 

Lemma 8.3. If = 0 , then the escape probability matrix is such that  

 (39) 

where and

 (40) 

Proof. We know from Coolen-Schrijner and van Doorn [21, Section 3] that the deviation 
matrix of Q is equal to the group inverse of Q , that is, .
Therefore,  

 (41) 

as and by assumption. Furthermore, ( )Qu
ije is the probability 

P[ ( ) = | (0) = ]u j i  and so (41) may be interpreted by (1) as  
= E[ | (0) = 0, (0) = ],limi t

t
h X X i



and we write  for short. By conditioning on the first time the process 
escapes from ( , )a b , it is straightforward to verify that  

C  Latouche, Nguyen

18



and this concludes the proof. 

Remark 8.4. The vector  has a number of interesting properties that we need later. We 
observe that  since . Furthermore,  

 (42) 

 (43) 

To justify the first equation, we use the interpretation given to , and we use the fact that 
if 0  , starting from a phase in  , the process returns to 0 in finite time with probability 
1. The justification of (43) is similar.  

In summary, the distribution of the phase upon escaping from the interval ( , )a b is 
given in the next theorem. 

Theorem 8.5. The distribution of the phase at first escape from ( , )a b is given by 
( , ) ( , )

( , ) ( , ) 1
0 0 00 0 0 ( , ) ( , )= ( )

a b a b
a b a b

a b a b

B A
B A Q Q Q

B A
 

   
 

 
           

if 0(0)  . If 0  and (0) is in  or  , then  
( , ) ( , )

1
( , ) ( , ) = ( ) ,
a b a b

a b a b

B A
I

B A
  

 

 
 

  
   (44) 

where  and  are defined in Lemma 8.2. 

If 0  and (0) is in  or  , then  
( , ) ( , )

#
( , ) ( , ) = ( ) ,
a b a b

T
a b a b

B A
I

B A
  

 

 
   

  
  (45)

where  is the left eigenvector of I   for the eigenvalue 0,  

and  is defined in (40).  
Proof. The first two statements have been justified before, we include them for 
completeness. If = 0 , the matrix  is stochastic and irreducible. As  

 

( )

( )

0 0
= = ( ) ,

0 0

U a b

U a b

I e I I
I I

I Ie I





     
             
 

the matrices I  and I  are similar and I  has a unique eigenvalue equal to 0. 
The corresponding left eigenvector  is such that  

Queueing Models and Service Management

19



 (46) 

 and we may choose . Thus, the system (36) has the solution  

 (47) 

for some vector . We post-multiply (47) by , the left-hand side is equal to  by 
Lemma 8.3 and we obtain  

provided that . This is equivalent to showing that  is, indeed, linearly 
independent of the columns of ,I   which in turn implies that (36, 39) is a non-singular 
system when = 0 .

Now,  

 (48) 

by (46). The vector  is indexed by phases in   and we write, for short,  

0 0as X( ) = 0 and ( ) ,   


since ( ) < 0X t for 0<t   . The inequality is strict for at least one component of .
Otherwise, by Remark 8.4, we would get , from which we would 
successively conclude that  for some scalar c , that , and that ,
which would be in contradiction with , by Remark 8.4. Consequently, (48) 
becomes  

 (49) 

By an argument similar to the one held above, we find that  
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as ( ) ( ) = 0a bX a b 
   , ( )a b  

  , and ( ) ( ) < 0X t a b  for < a bt  
 . With this, (49) 

becomes  

This completes the proof. 

In the same manner as in Section 7, we may determine the LS transform of the random 
variable min( , )a b   , details are in Bean et al. [13]. 

9. Numerical Procedures 
It should be clear by this point that the numerical evaluation of many quantities of 

interest is dependent on being able to compute the matrices  and  . If we replace U in 
(15) by the right-hand side of (13) and write  

then an obvious approach to compute  is to proceed by successive substitution: define 
iteratively  

 (50) 

for 0n  , starting from 0 = 0.  The resulting sequence is monotonically convergent to 
 as we show in Theorem 9.1. The proof is new, and we give it in detail. It is based on the 
evolution of a stack  associated to the fluid queue. 

At the epochs when the phase process enters  after a sojourn in ,  we put the 
level at the top of the stack; the value recorded on top of the stack is removed when the fluid 
decreases to that level. Formally, we define the sequence { : 0 }ks k L  of epochs where 
the stack increases during the interval [0, ] :

0 = 0,s

1= inf{ > : ( ) } with = inf{ > : ( ) } ,k k k ks t f t f t s t     

and = sup{ : < }kL k s  . On the sample path of Figure 5, = 6L and we have marked 0s to

6s .
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Figure 5. The fluid level ( )iX s is pushed on the stack at time is , = 0,1i  . The 
epochs 1s to 6s of removal of the top are marked but not labeled, they are ordered as 

3 2 1 4 6 5 0< < < < < <s s s s s s s       . The maximum size of the stack is 4, reached at time 3s .

Next, we define { : 0 }ks k L   :
= inf{ > : ( ) = ( )}.k k ks t s X t X s

On Figure 5, the epochs 1s to 6s are marked, but not labeled so as not to clutter the graph. 
At time ks , the size | | increases by one and we record ( )kX s on top of  , at time 

ks we remove the top of  and | | decreases by one. Note that 0 =s  , and that the stack 
becomes empty for the first time. 

Theorem 9.1. The sequences n , 0n  defined by 

 0
( ) = P[ < , ( ) = , | ( ) | | (0) = ],maxn ij

t
j t n i  

 
      (51) 

for i in  , j in  , satisfies (50). Furthermore, n is the unique solution of the linear 
equation

1 1
1 = 0,n n nC T C T U 

        (52) 
where

1 1
1 1=| | | |n nU C T C T 
        (53) 

for 1n  .
The sequence { }n converges monotonically to  and { }nU converges to ,U as 

n  .

Proof. It is obvious that the sequence defined by (51) is monotone and converges to  as 
there are fewer constraints on the trajectories for increasing n until there is none in the limit. 

Next, we show that the return probabilities defined in (51) are solutions of (50). For 
= 1n , we have  

C  Latouche, Nguyen

22



This means that the fluid queue spends some time in  and grows up to some level ,
then switches to  and never returns to  until hitting level 0. We push the value 0 on 
  at time 0, remove it at time  and so | |= 1 over the whole interval. This shows that 

1 is a solution of (50) with 0 = 0 .
For the general case, we illustrate on Figure 6 the physical meaning of the right-hand 

side of (50): the fluid process grows up to some level , then goes down to 0 with occasional 
episodes of growth; during those episodes, the trajectories followed by the process are 
constrained by the definition of n .

Such episodes, if any, occur during intervals ( , )i ia b , 1 i L  , with  

1 1= ,a s

= inf{ > : ( ) = ( )}i i ib t a X t X a

1 = inf{ > : ( ) },i ia t b t 

= sup{ : < }.iL i a  During the intervals 0 1 1 1 1 0( , ( , )) ( , ),i L i i Ls a b a b s        contains only 
the value 0 which was pushed at time 0, and | |= 1 . During the intervals ( , )i ia b , the stack 
may increase at most by n units. Thus, | | 1n   over the whole interval [0, ] and the 
right-hand side of (50) is equal to 1n .

With nU  defined in (53), (50) becomes  

 (54) 

and (52) follows in the same manner as we proved (16). The coefficients 1C T
  and nU

are both defective generators, all of their eigenvalues are in <0 , and so the system (52) has 
a unique solution n . Therefore, the sequence { , }n nU  is well-defined and the theorem 
follows. 

Figure 6. Approximation 1n by functional iteration: the size of the stack increases 
at most by n over the intervals 1 1[ , ]a b , 2 2[ , ]a b and 3 3[ , ]a b and is at most 1n 
over the whole interval 0 0[ , ]s s .
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The algorithm defined by (52, 53) is easily implemented and is the most efficient 
among several linearly convergent algorithms, as shown in Bean et al. [8]. Several other 
procedures have been proposed in Guo [32] and Bini et al. [16, 17]. A special mention 
should be made of the Newton method as it is easily implemented and much faster than 
functional iteration: the sequence ( ){ }N

n defined by  
1 1 ( ) 1 ( )

1( | | )N N
n nC T C T C T  

        
( ) 1 1 ( ) ( ) 1 ( )

1 (| | | | ) = | |N N N N
n n n nC T C T C T  
          

 for 0,n   with ( )
0 = 0,N  is well-defined and converges quadratically if 0  .

The most efficient algorithms today form the family of doubling algorithms, which 
solve simultaneously for  and for  ; they include the structure-preserving doubling 
algorithm (SDA, Guo et al. [35]), SDA shrink-and-shift (Bini et al. [15]), componentwise-
accurate doubling algorithms (Nguyen and Poloni [43]), and alternating-directional 
doubling algorithm (Wang et al. [48]). These algorithms are quadratically convergent if 

0   and, furthermore, each iteration is faster due to fewer computations. 

10. Extensions 
After the publication of Ramaswami’s seminal paper [44], the basic fluid queue model 

defined through Equations (1) and (3) has been extended in many ways. We cite some of 
these, without getting into details, the list is far from exhaustive. 

Finite buffers. In some applications, ( )Y t represents the content of a finite buffer, so 
that the level may only take values in some interval 0 ( ) <Y t B   (see da Silva Soares 
and Latouche [23, 24] and Bean et al. [13]). In that case, it is natural to choose as 
regeneration points the epochs of return to the upper boundary in addition to the returns to 
level 0, and the transition matrix H between regeneration points makes use of first passage 
probabilities from boundary to boundary. These may be obtained from Lemma 8.2 with 

= 0a and =b B , if the process starts from the lower boundary, or =a B and = 0b , if the 
process starts from the upper boundary. 

The final expression for the stationary density is a mixture of two matrix exponentials, 
Kxe and

 ( )K B xe  . Details may be found in da Silva Soares [25] and in Latouche and Nguyen 
[38].

Level feedback. In our presentation so far, the level is driven by the phase, subject to 
the boundary constrains that ( ) 0,Y t  or 0 ( ) ,Y t B  while the phase evolves independently 
of the level. In many cases, the level has a direct influence on the evolution of the phase; 
for instance, one might reduce the flow into the buffer as the level gets nears the upper 
boundary, so as to avoid spillage. 

In Bean et al. [9] and da Silva Soares [25] (and other references cited there), one defines 
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a number of threshold values 1 20 < < < Nb b b   such that the parameters C and Q
of the phase process change upon the crossing of a threshold. Here, regenerations occur 
when the fluid reaches any of the threshold, and the analysis of such systems may be based 
on a systematic extension of the results for the system with a finite buffer. 

Fluid with jumps. In Remiche [45] ( )Y t represents the supply of tokens in a leaky 
bucket system. It increases linearly in time and drops by a positive amount each time a file 
is transmitted. In Bean et al. [12], ( )Y t represents the amount of wear of a power generator 
and it may jump from B (indicating that the generator is unusable) to 0 (indicating that it 
has been replaced by a new equipment). As discussed in Badescu et al. [7] and Stanford et
al. [47], risk processes may be analysed as fluid queues with jumps. 

If the jumps have a phase-type distribution, then the analysis of the process requires 
very little adaptation from the material presented in the present paper. 

Markov modulated Brownian motion. The definition of these processes is very 
similar to that of fluid flows. The difference is that the fluid evolves like a Brownian motion 
with parameters (drift and variance) which depend on ( )t . Recent references are d’Auria
et al. [26, 28], Ivanovs [36], Gribaudo et al. [31] where the authors focused on obtaining 
time-dependent distributions and first hitting times using different approaches: stochastic 
ODE resolution, spectral decomposition and martingale theory. Breuer [18] determined the 
occupation time of the process in an interval before a one- or two-sided exit. Latouche and 
Nguyen [38, 39] are two recent papers that follow a regenerative approach similar to the 
one developed here. 

Two-dimensional fluid. A few authors have considered systems where the component 
X  is two-dimensional: Bean and O’Reilly [10, 11], Foss and Miyazawa [29] and Latouche 
et al. [40] among others. The area of two- or higher-dimensional fluids is still wide open, 
with many exciting unanswered questions. 
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