
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 

The different models of Queuing-Inventory Systems (QIS) has been widely 
investigated due to its real-world applications in different sectors and industries. The 
detailed summary of Perisable and Non-Perishable QIS models is given in Karaesmen et al. 
[5] and Krishnamoorthy et al. [8]. 

Classical QIS models are based on the several fundamental assumptions. The first and 
important one is that after the customer service completion inventory level decreases. But 
in reality this condition does not always hold, because some customers may refuse to 
purchase the item after being served. The model with such type of customers was first 
studied in Krishnamoorthy et al. [9, 10]. Later the similar models were analyzed in Melikov 
and Shahmaliyev [13] and Melikov et al. [12] as well. 

The second assumption in the studies of QIS models is the absence of feedback. In 
other words, served customers are not considered for the repeated service call. But in some 
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systems the served customers may return to the system instantly (Instantaneous Feedback, 
IFB) or after some random period of time (Delayed Feedback, DFB) because of the 
qualitative service. Takacs [16, 17] was the first to study queueing models with unlimited 
inventory. The summary of the classical queuing models with feedback is provided in 
Koroliuk et al. [7] and Melikov et al. [11]. After analysis of the existing literature we found 
out that the QIS with Feedback (Queuing-Inventory Systems with Feedback, QISwFB) 
models were less studied and the only papers we could found are Amirthakodi et al. [1, 2]. 
Let’s consider these papers in more detail below. 

Single-channel QISwDFB with non-perishable inventory and finite queue of the 
primary customers ( p -customers) with Poisson arrival was investigated in Amirthakodi et 
al. [2]. If the queue is full at the arrival of a p -customer then it leaves the system without 
being served. The p -customer according to Bernoulli trial either joins the orbit for future 
call or leaves the system after the service completion. The orbit has finite length and every 
customer after some exponentially distributed random time period recalls for the service 
independently. The system serves the repeated customers ( r -customers) if there are no p -
customers and/or inventory level is zero. The r -customer requires only service, that is after 
the service completion of r -customers the inventory level remains unchanged. Service 
times of both types of customers are exponentially distributed but with different parameters. 
The non-preemptive service policy is assumed, so that if the r -customer is being served at 
the moment of arrival of p -customer, the ongoing service is not interrupted. Repetitive 
orbit re-joining is considered as well, that is after the service completion of r -customer 
according to Bernoulli trial it either re-joins the orbit or leaves the system. The ( , )s S
inventory replenishment policy with positive exponential lead time is applied. The three 
dimensional Markov Chain (3D MC) is used to describe the mathematical model of the 
system. The algorithm based on the matrix algebra (see Neuts [14]) was developed for the 
calculation of steady-state distributions. Additionally, the formulas for the calculation of the 
average performance measures and the total cost were developed. Laplace-Stieltjes 
transform of waiting time was derived for both types of customers. 

The QISwIFB model with perishable inventory (PQISwIFB) was studied in 
Amirthakodi et al. [1]. This paper investigates a single-channel PQISwIFB with finite queue 
of p -customers that forms the MAP flow. The inventory item lifetime is finite with 
exponentially distributed random time period. After the service completion the p -customer 
either instantly joins the second queue of infinite length for the repeated service or leaves 
the system according to Bernoulli trial. Then the next p -customer or the r -customer from 
the second queue is taken for the service. The r -customer after being served either instantly 
re-joins the second queue or leaves the system. System accepts the p -customers only if the 
inventory level is positive after the r -customer is served. Otherwise, if there are no p -
customers and inventory level is zero the channel becomes idle for an exponentially 

Melikov, Krishnamoorthy, Shahmaliyev

84



distributed period of time. If during the idle period the p -customer arrives and inventory 
level becomes positive the channel starts to serve the customer. If after the idle period no

p -customer arrives and the inventory is still empty, the channel begins to serve the r -
customers. Likewise in [2] the r -customers requires only the service and the inventory level 
remains unchanged after service completion. The system uses hybrid replenishment policy, 
so that if inventory level drops to s then the order of size S s is placed. The order of size
S i is placed when the inventory level is equal to , <=i i s  after the service completion 

of r -customer. The ordered items are received after a random time which is distributed as 
phase-type. The system is modeled by 6D-MC and the algorithm based on matrix algebra is 
developed to calculate the steady-state probabilities. Additionally, the formulas for the 
performance measures were derived and the total cost minimization problem was 
considered. It should be noted that the developed algorithm is very complex for the practical 
implementation and becomes less effective for the models of larger dimension. 

The analysis of PQISwDFB models is motivated by its real-world applications in areas 
like food industry, chemicals, pharmaceuticals, blood bank management and many other 
related sectors where the perishability needs to be considered. The detailed summary of the 
PQIS’s real-world applications is provided in Goyal and Giri [4] and Shah and Shah [15]. 

In our paper we present new single-channel PQISwDFB model. It is similar to the 
model studied in [2] but with the following differences:   

• We study the model with perishable inventory.  
• There are three options after the service completion for the customer:   

1. Customer leaves the system without purchasing an item.  
2. Customer purchases the item and leaves the system.  
3. Customer does not purchase the item and joins the orbit for "decision making".  

• r -customer may purchase inventory item as well.  
• Both finite and infinite queues of customers are considered.  
• Customers in the queue become impatient when there are no items left in the 

inventory.  
These differences improve the model’s correspondence to the real systems. 

Additionally, we present the efficient method for the calculation of steady-state probabilities. 
Also we derive the formulas for the performance measures that contains tabulated functions. 

The paper is organized as follows. First, we provide the general model description and 
introduce the problem statement. In the next section, we develop the mathematical model 
of the system using 3D MC, construct the corresponding transition matrix (Q-matrix) and 
derive the exact formulas for the system performance measures. Then we analyze the finite 
and infinite models with respect to the queue length and orbit size. Finally, we provide the 
numerical results with the illustrations and conclude the article.  
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2. Model Description and Problem Statement 
The system continuously monitors the inventory so that every inventory item becomes 

unusable (perishes) after some finite exponentially distributed random time. Also, we 
assume that the reserved item while serving the customer cannot perish. 

The p -customers arrive into the system according to Poisson scheme. For the 
simplicity, all the inventory items are considered identical and after the service completion 
the inventory level decreases by a single unit if the customer purchases the item. 

If at the moment of the customer arrival there are items in the inventory and the channel 
is idle then the customer is taken to the service. When channel is busy the arrived customer 
joins the queue and waits for service. The customer either joins the queue according to 
Bernoulli trial or leaves the system if the inventory level is zero at the moment of arrival. 
The customers in the queue become impatient when the inventory level drops to zero and 
they independently leave the system after waiting some exponentially distributed period of 
time. 

We consider the models both with finite and infinite queues. The customer is lost when 
the finite queue is full. When the queue is infinite all p -customers join the system. 

There are three options after the service completion of the p -customer:   

1. Customer leaves the system without purchasing an inventory item.  
2. Customer purchases the item and leaves the system.  
3. Customer does not purchase the item and joins the orbit for "decision making".  

We assume that the customers in orbit do not have any information about the queue state or 
inventory level. After some random period of time every r -customer in orbit recalls for the 
service independently, while the system does not differentiate between p -customers and r
-customers. Impatience rates and service times for both types of customers are the same. 
The served r -customer may re-join the orbit, that is the repetitive orbit joins are possible. 

The r -customers in orbit are assumed to be insistent. If the queue is full or the 
inventory level is zero at the moment of arrival the r -customer returns to the orbit. 

The service time depends on whether the customer purchases the item or not, but it has 
an exponential distribution with different parameters for each case. This assumption 
corresponds to reality because the service time needed for the customer that purchases the 
item is greater than for the one which does not. 

For the simplicity, we use the 2-level inventory replenishment policy in our model 
where the order lead time is an exponentially distributed random variable with finite mean. 

The problem is to find the steady-state distribution of the system, calculate the average 
performance measures. Also we derive the formulas for the performance measures and 
perform the cost analysis of the system.  
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3. Calculation Methods 
We identify the system parameters as follows:   

• S - the maximum inventory size  
• s - the replenishment order threshold, < / 2s S  
• N - the maximum queue size for the model with finite queue  
• R - the maximum orbit size for the model with finite orbit  
• 1  - the average inventory item lifetime  
•  - the arrival rate of p -customers  
• 1  - the average waiting time in queue when the inventory level is zero  
• 1 - the probability of joining queue when the inventory level is zero  
• 2 - the leaving probability when the inventory level is zero, 2 1=1    
• 1 - the probability of leaving the system without purchasing an item after the service 

completion  
• 2 - the probability of purchasing an item and leaving the system after the service 

completion  
• 3 - the probability of joining the orbit for "decision making" without purchasing an 

item after the service completion  
• 1

1
 - the average service time of the customer that does not purchase the item after 

service completion  
• 1

2
 - the average service time of the customer that purchases the item  

• 1  - the average lead time of the order  
• 1 - the average dwelling time in the orbit  

Remark 1. Later the term customer will refer to both types of customers ( r  and p  
customers), unless indicated explicitly. 

Based on the model description and parameters’ definition, the process life cycle is 
visualized in Figure 1. 

The model is described by 3D MC with the states ( , , )m n k , where m is inventory 
level, n is queue size and k is the orbit size. The state space (SS) of the model is defined 
as follows:  

'
'

=0

= , = , .
R

k k k
k

E E E E k k                    (3.1) 

where  = ( , , ) : = 0,1, , ; = 0,1, , , = 0,1,2, ,kE m n k m S n N k R . 
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Figure 1. The structure of the investigated Markov model. 

We conclude from (3.1) that SS is a set of points with integer coordinates inside the 
parallelepiped with height 1R  and rectangle base ( 1) ( 1)S N   . The parallelepiped is 
illustrated in Figure 2 for the model with finite orbit and queue length. 

 
Figure 2. The state space of the 3D Markov model. 

The transitions between the states inside the class kE occur after the following events:   
• arrival of p -customer  
• inventory replenishment  
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• service completion  
• inventory perishing  
• leaving the system due to impatience  

The transitions between the classes kE and 'k
E are associated with the following 

events:   
• joining the orbit  
• r -customer arrival from the orbit  

The transition rate from the state 1 1 1 1
( , , ) km n k E to the state 2 2 2 2

( , , ) km n k E is 
denoted by 1 1 1 2 2 2(( , , ),( , , ))q m n k m n k . The set of all these rates forms the generator matrix 
(Q-matrix) of the 3D MC. 

According to the accepted service scheme and inventory replenishment policy of the 
model, we get the following formulas for the transition rates inside the class kE (see 
Algorithm 1):  

2 1 2 1

1 1 2 1 2 1

2 2 2 1 2 1

1 1 2 2 1 2 1 2 1

1 2 1 2 1

2 1 2 1

, = , = 1
, = , = 1
, = 1, = 1

(( , , ), ( , , )) = ., = 1, = = 0
( 1) , = 1, = > 0

, = , =
0,

if m m n n
if m m n n

if m m n n
q m n k m n k m if m m n n

m if m m n n
if m m S s n n

otherwise



 






 

 
 
  

 



 (3.2) 

when 1 > 0m ,  
 

1 2 2 1

1 2 2 1
1 2 2

2 2 1

, = 0, = 1
, = 0, = 1

((0, , ), ( , , )) = .
, = , =

0,

if m n n
n if m n n

q n k m n k
S if m S s n n

otherwise






 
 


 (3.3) 

when 1 = 0m . 

The state transition diagram inside the merged class kE is illustrated in Figure 3. The 
rows and columns in Figure 3 describe the changes in inventory level and queue length 
correspondingly.  

 
 
 

 

Queueing Models and Service Management

89



1. function QELEM 1 1 1 2 2 2( , , , , , )m n k m n k               1 1 1 2 2 2(( , , ),( , , ))q m n k m n k  
2.    define : 0q    
3.    if 2 1=k k  and 1 0m   then 
4.       if 2 1=m m  and 2 1 1n n   then :q   
5.       else if 2 1=m m  and 2 1 1n n   then 1 1:q   
6.       else if 2 1= 1m m   and 2 1 1n n   then 2 2:q    
7.       else if 2 1= 1m m   and 2 1 0n n   then 1:q m   
8.       else if 2 1= 1m m   and 2 1 0n n   then 1: ( 1)q m    
9.       else if 1m s  and 2 1m m S s    and 2 1n n  then :q   
10.    else if 2 1=k k  and 1 0m   then 
11.        if 2 = 0m  and 2 1 1n n   then 1:q   
12.        else if 2 = 0m  and 2 1 1n n   then 1:q n  
13.        else if 2m S s   and 2 1n n  then :q   
14.    else if 2 1k k  and 2 1 0m m   then 
15.        if 2 1= 1n n   and 2 1 1k k   then 1 3:q   
16.        else if 2 1= 1n n   and 2 1 1k k   then 1:q k  
17.    return q  
---------------------------------------------------------------------------------------------------------- 

 
Figure 3. The state transition diagram within the class kE . 

Algorithm 1. The calculation of Q-matrix element 
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The transition rates between the classes
1k

E and
2kE , 1 2k k are defined as follows 

( > 0m ):  

1 3 2 1 2 1 1

1 1 2 2 1 2 1 2 1 1

, = 1, = 1, <
(( , , ),( , , )) = , = 1, = 1, < .

0,

n n k k k R
q m n k m n k k n n k k n N

otherwise




 
  


 (3.4) 

The stationary probability of the state ( , , )m n k E is denoted as ( , , )p m n k . We conclude 
from the formulas (3.2), (3.3), (3.4) that the Q-matrix of the model is irreducible, therefore 
there exists the stationary distribution. 

The performance measures of the system are calculated via stationary distributions. 
We will derive the formulas for the following performance measures: avS -average 
inventory level, av - average inventory perishing intensity, RR - average reorder rate, sL - 
average queue length, oL - average number of the r -customers in the orbit, RL - average 
customer loss intensity. 

The average inventory level, average queue length and average orbit size are defined 
as the mathematical expectations of the corresponding random variables:  

( , , )

= ( , , ) .av
m n k E

S mp m n k


                          (3.5) 

 
( , , )

= ( , , ) .s
m n k E

L np m n k


                           (3.6) 

         
( , , )

= ( , , ) .o
m n k E

L kp m n k


                           (3.7) 

The average perishing rate, assuming that the reserved item for the service cannot perish, is 
calculated as follows:  

=1 ( ,0, ) =2 ( , , )

= ( ,0, ) ( 1) ( , , ) ( > 0) .
S S

av
m m k E m m n k E

m p m k m p m n k I n
 

 
   

 
     (3.8) 

where ( )I A is the indicator function of .A  
The replenishment order of the inventory is placed independently whenever the 

inventory level drops to the threshold s :  

2 2
( 1,0, ) ( 1, , )

= ( 1) ( 1,0, ) ( ) ( 1, , ) ( > 0) .
s k E s n k E

RR s p s k s p s n k I n   
   

       (3.9) 

The customer loss intensity RL consists of three components:   

1. the loss intensity of p -customers ( pRL ).  
2. the loss intensity because of orbit overflow ( oRL ).  
3. the loss intensity because of impatience of both types of customers ( sRL ).  

Queueing Models and Service Management

91



 2
( , , ) (0, , )

= ( , , ) (0, , ) ( < ) .p
m N k E n k E

RL p m N k p n k I n N 
 

           (3.10) 

 1 3
( , , )

= ( , , ) ( > 0) .o
m n R E

RL np m n R I mn


             (3.11) 

  
(0, , )

= (0, , ) .s
n k E

RL np n k


                   (3.12) 

In order to calculate the above performance measures we need to obtain the steady-
state probability distributions from the balance equations corresponding to the Q-matrix. 
These are the system of ( 1) ( 1) ( 1)S N R     linear equations that cannot be solved 
numerically in a reasonable time for larger or infinite values of the parameters 
( (( 1)( 1)( 1))S N R   . Therefore, we apply the method of phase integration of the states 
of stochastic systems from Korolyuk and Korolyuk [6], where the hierarchical phase 
integration algorithm is proposed to calculate the stationary distribution of the three-
dimensional MC when the certain asymptotic conditions are satisfied. Following the 
terminology therein, we call it the hierarchical space merging algorithm (SMA). 

The idea behind SMA is to divide the original State Space into the 1R  parallel sub-
planes where each plane denotes the merged state. Later the original stationary distribution 
is expressed approximately through the probability of the merged state according to the 
conditional probability formula. This process is repeated hierarchically until the dimension 
of the system is reduced to one. Therefore, the SMA is computationally efficient method as 
it diminishes the dimension of the system of equations. It should be noted that SMA 
produces the approximate solution and currently there are no any formulas for the estimation 
of the accuracy. The accuracy could be estimated experimentally and it produces highly 
accurate results when the transitions between the merged states are sufficiently small. The 
more detailed information about SMA could be found in [6]. 

For the correct application of the SMA method to our model the transition rates 
between the states of different classes kE should be very small compared to the transitions 
inside the class. This assumption holds for the systems where the probability of joining the 
orbit is far smaller than the total probability of leaving the system: 3 2 1.    

Assuming the above condition we will consider four models:   

1. Both the queue length N and orbit size R are finite. We will provide the details of 
SMA and its application for this model, but provide only the final results for other 
cases.  

2. The queue length N is finite and orbit size R is infinite.  
3. Both queue length N and orbit size R are infinite.  
4. The queue length N is infinite and orbit size R is finite.  

Melikov, Krishnamoorthy, Shahmaliyev

92



3.1. Analysis of the model with finite queue length and orbit size 

In this section we will consider the step by step application of SMA for the finite model,
N   and <R  . In the first step of the hierarchy we construct the merge function

1( , , ) =U m n k k  based on (3.1), where the merged state k  represents the set of all the 
states inside the class .kE The set of the all merged states is denoted by

1 ={ : = 0,1, , }k k R   . Then we get the following approximate formula for the steady-
state distributions:  

 1( , , ) ( , ) ( ) .kp m n k m n k                       (3.13) 

where ( , )k m n is the probability of the state ( , )m n inside the class kE and 1( )k   is the 
probability of the merged state k  , 1.k   

Further, based on (3.13) our problem is reduced to finding the probability distributions 
of the 1R  number 2D MC-s and a single 1D MC accordingly. 

Now we re-apply SMA to the obtained 2D MC-s with state spaces , = 0,1, ,kE k R
in order to find the corresponding ( , )k m n probabilities. All the 2D MC-s are identical, 
therefore we will consider the model with fixed k :  

 1 2
1 2

=0

= , = , .
S

m mm
k k k

m

E E E E m m       (3.14) 

where  = ( , , ) : = 0,1, , , = 0, , .m
k kE m n k E n N m S  Similarly, we construct the 

merge function 2( , , ) =U m n k m  based on (3.14), where the merged state m  represents 
the set of all the states inside the class .m

kE The set of the all merged states is denoted by
2 ={ : = 0,1, , }.m m S    Consequently, according to SMA:  

2( , ) ( ) ( ) .k k k
mp m n n m                          (3.15) 

where ( )k
m n is the probability of the state ( , )m n inside the class m

kE and 2 ( )k m   is the 
probability of the merged state ,m  2m  . 

Further, we consider the problem of finding the probabilities ( )k
m n of the split models. 

We conclude from the formulas (3.2), (3.3), (3.4) that the transition rates between the states 
of the split model with state space m

kE do not depend on the index k , therefore this index 
is omitted in ( )k

m n and 2 ( )k m   onward. According to the formulas (3.2), the probability 
distributions inside the all split models with the state space , =1, ,m

kE m S  are the same 
as in the classical model / /1/M M N with load 1 1= / ( )a   :  

 1( ) = (1 ) / (1 ), =1, , .n N
m n a a a m S              (3.16) 

For the model with the infinite queue length we will assume that < 1a in order to 
ensure the system stability. 

Similarly, we conclude from the formulas (3.3) that the probability distribution inside 
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the split model with the state space 0
kE are the same as in the Erlang model / / /M M N N

with load 1= /b   :  

 0

=0

( , )( ) = , = 0,1, , .
( , )

N

j

b nn n N
b j




                  (3.17) 

where ( , ) =
!

jii j
j

 . 

After performing the mathematical transformations over the formulas (3.2), (3.3), 
(3.16), (3.17) we derive the following for the transition rates between the merged states

1 2 2( ),( )m m     (see Figure 4):  

 
1 1 2 1

1 2 1 2 1

( ), = 1
( , ) = , <= , = .

0,

m if m m
q m m if m s m m S s

otherwise


 
     


        (3.18) 

where 1 1 1 2 2 1 1( ) = (0) (1 (0))( ( 1) ), =1,2, , .m m m m S          
 

 
Figure 4. The transition diagram between the merged states .m

kE  

Further from (3.18) we derive (see [6]):  

 

2

2
2

2

( 1 ), 0
( 1 ), 1

( ) = .
( 1 ), 1

m

m

m

s if m s
s if s m S s

m
s if S s m S

 
 


 

    
                


            (3.19) 

where 
1

1

= 1 1

( )=
( 1)

s

m
i m

i
i









   , 1

1

( 1)=
( )m
s
m

  


, 
=1

=
( )

S

m i
i m S sm

 
   , 1(0) = 0 . 

The probability 2( 1 )s    is found from the normalizing condition:  

 
1

2
=0 = 1 = 1

( 1 ) =
s S s S

m m m
m m s m S s

s   


  

      
 
    

Consequently, after applying some mathematical transformations we derive the 
following formula for the transition rates between the classes 1 2 1,k k    :  
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2 2 1

1 2 1 2 2 1

, = 1
( , ) = , = 1.

0,

if k k
q k k k M if k k

otherwise

 
    


              (3.20) 

where 2 1 3 2= (1 (0))(1 ( 0 ))       , 2 2= (1 ( ))(1 ( 0 ))M N      . 

We conclude from (3.20) that the probabilities of the merged states 1 1( ),k k    
are the same as in the model / / /M M R R with load 2 2= /c M :  

 1

=0

( , )( ) = , = 0,1, , .
( , )

R

j

c kk k R
c j




 


              (3.21) 

Finally, according to the formulas (3.13) and (3.15) the approximate steady-state 
probabilities of the initial 3D model is calculated as follows:  

 2 1( , , ) ( ) ( ) ( ) .mp m n k n m k                     (3.22) 

After substituting (3.22) in the formulas (3.5)-(3.12) we derive the following approximate 
formulas for the calculation of the system performance measures:  

2
=1

( ) .
S

av
m

S m m                       (3.23) 

  
2 0 2

=1 =1

1
2 2 1

( 0 ) ( ) (1 ( 0 )) ( )

1= ( 0 )(1 ( , )) (1 ( 0 )) .
1 1

N N

s
n n

N
B N

L n n n n

a Nb E b N a
a a

   

  


      

           

 
 (3.24) 

 (1 ( , )) .o BL c E c R                     (3.25) 

  
2

=1

1

2 1 1
=1

( )( (0) ( 1)(1 (0)))
.

1= ( ) ( 1)
1 1

S

av
m

NS

N N
m

m m m

a a am m m
a a

   

 


 

      

  
      




        (3.26) 

  
2 2 2

1

2 2 21 1

( 1 )[( 1) (0) ( )(1 (0))]
.1= ( 1 )[( 1) ( ) ]

1 1

N

N N

RR s s s
a a as s s

a a

     

    


 

       

 
     

 

 (3.27) 

        2 0 2 2 0 2

2 2 2

[ ( )(1 ( 0 )) ( ) ( 0 ) (1 ( )) ( 0 )]
.

= [ ( )(1 ( 0 )) ( 0 )( ( , ) (1 ( , )))]
p

N
B B

RL N N N
a N E b N E b N

       
    

          
       

 (3.28) 
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  1 3 1 2

1 3 2

( )(1 (0))(1 (0))
.

= ( , )(1 (0))(1 (0))
o

B

RL R
E c R

   
  

    
 

              (3.29) 

   2 0 2
=1

( 0 ) ( ) = ( 0 )(1 ( , )) .
N

s B
n

RL n n b E b N               (3.30) 

Remark 2. ( , )BE x K quantities are the Erlang B-formulas for the calculation of the 
customer loss probability for the model / / /M M K K with the load x . We provide the 
formulas for the case 1a  , because when = 1a the formulas become even simpler:

( ) =1/ ( 1), = 0, ,n N n N  . 

Remark 3. We conclude from the formulas (3.15)-(3.22) that the stationary distributions 
depend on all the load parameters of the system. At the same time, according to the formulas 
(3.23)-(3.30) only oL depends explicitly on the arrival intensity of the r -customers. The 
reason is that according to our assumption, the probability of joining the orbit is far smaller 
than the total probability of leaving the system, in other words, the arrival intensity of the
r -customers are far smaller than of the p -customers. Additionally, the arrival intensity of 

the p -customers influences the population of r -customers in the orbit, consequently, all 
the performance measures depend on the arrival of r -customers implicitly. 

The presented methodology could be applied to PQISwDFB with the infinite queue 
and orbit size, =N  and/or =R  . Below we skip intermediary mathematical 
transformations and present the resulting formulas for the steady state probabilities and the 
system performance measures for each case.  

3.2. Analysis of the model with finite queue length and infinite orbit size  

Now we consider the key points and differences for the case where N   and R   :   

• ( )m n and 0( )n are calculated by the formulas (3.16) and (3.17) accordingly.  

• The probabilities of the merged states 1 1( ),k k     are the same as in the model    
2 2( ) / ( ) /M M M  :  

 1( ) , = 0,1, .
!

k
cck e k

k
                    (3.31) 

• Approximate formulas of the performance measures are calculated with the formulas 
(3.23)-(3.30),   except oRL and .oL = 0oRL as the orbit size is infinite and loss 
probability due to orbit overflow is impossible. The average orbit size is calculated as 
follows:   

    .oL c                          (3.32) 
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3.3. Analysis of the model with infinite queue length and infinite orbit size  

In this section we consider the key points and differences for the case where =N 
and =R  :   

• The probabilities of all states within the split models with the state space 
, =1, ,m

kE m S  are the same    as in the classical model / /1/M M  with the load
1 1= / ( ) :a   ( ) = (1 ) , =1, ,n

m n a a m S  . We assume that the ergodicity 
condition < 1a  holds true to ensure the system stability.  

• The probabilities of all states within the split model with the state space 0
kE  are the 

same as in the Erlang model / /M M  with the load 1= /b   : 
0( ) = ( , ) , =1,2,bn b n e n   .  

• The probabilities of the states of merged models are calculated by the formulas (3.19) 
and (3.31), where (0) =1 a  and ( ) = 0.N   

• The approximate values of avS and oL are calculated by the formulas (3.23) and (3.32) 
accordingly. The other performance measures are calculated as follows:  

  2 2( 0 ) (1 ( 0 )) .
1s

aL b
a

       


                   (3.33) 

       2
=1

( )( ) .
S

av
m

m m a                       (3.34) 

 2 2 2( 1 )(( 1) (1 ) ( ) ) .RR s s a s a                    (3.35) 

       2 2( 0 ) .pRL                        (3.36) 

             2( 0 ) .sRL b                              (3.37) 

3.4. Analysis of the model with infinite queue length and finite orbit size  

Finally, we analyze the case where =N  and <R  :   

• The state probabilities within the split models with the state space , =1, ,m
kE m S  and

0
kE are the same as in =N  and =R  model. We assume that, the ergodicity 

condition 1 1= / ( ) < 1a    holds true to ensure the system stability.  
• The steady-state probabilities of the states of merged models are calculated by the 

formulas (3.19) and (3.21), where (0) =1 a  and ( ) = 0.N  
• The approximate values of avS and oL are calculated by the formulas (3.23) and (3.25) 

accordingly. 

The other performance measures are calculated using the formulas (3.33)-(3.37), 
except oRL :  

           1 3 2( , )(1 (0))(1 (0)) .o BRL E c R      
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4. Numerical Results 
Now we provide the results of the numerical experiments. First, we demonstrate the 

accuracy of the SMA for the finite model using comparison tables with exact solution. 
Additionally, dependence graphs for the performance measures are presented. Next, the 
performance measures’ dependence graphs of the partly-infinite (infinite queue or orbit size) 
models are compared and explained. Lastly, the optimization problem is solved for the full 
infinite (both queue and orbit size are infinite) model with respect to the reorder level and 
different replenishment services.  

4.1. Analysis of the model with finite queue length and orbit size 

First, we estimate the accuracy of the SMA algorithm for the model with finite queue 
and orbit. We will provide comparison of steady-state probabilities and performance 
measures. The accuracy will be estimated using the following norms:   

    • Cosine similarity: ( , , )
1 2 2

( , , ) ( , , )

( , , ) ( , , )
= .

( ( , , )) ( ( , , ))
m n k E

m n k E m n k E

p m n k p m n k
N

p m n k p m n k


 



 
  

    • Maximum absolute difference: 2
( , , )

= | ( , , ) ( , , ) | .max
m n k E

N p m n k p m n k


   

    • Root mean square deviation (RMSE): 
1
2

2
3 ( , , )

1= ( ( , , ) ( , , )) ,
| | m n k E

N p m n k p m n k
E 

 
 

 
  where | |E is the cardinality of the state 

space E .  
The exact values of steady-state probabilities are calculated from the linear system of 

balance equations corresponding to the Q-matrix. The system parameters for numerical 
experiments are accepted as follows:  

 1 2 1 2 1= 55, = 5, = 0.3, = 0.5, = 0.3, =1, =1.5 .        

The comparison results of the steady-state probabilities and performance measures are given 
in Tables 1 and 2,3 correspondingly. We conclude from these tables that the accuracy of the 
approximate approach is very accurate. 
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Table 1. Estimation of the accuracy of the steady-state probabilities versus various 
norms. 

( , )S N   ( , )s R   ( , )    
Norms 

   
 

(10,10) 
(1,2) (55,5) 0.98964 0.01834 0.00201 
(2,3) (60,10) 0.98955 0.02042 0.00200 
(4,4) (65,15) 0.98989 0.01731 0.00194 

 
(10,15) 

(1,2) (55,5) 0.98373 0.01826 0.00154 
(2,3) (60,10) 0.98456 0.02037 0.00149 
(4,4) (65,15) 0.98595 0.01726 0.00141 

 
(15,10) 

(2,2) (55,5) 0.95934 0.01823 0.00173 
(5,3) (60,10) 0.96858 0.02034 0.00154 
(7,4) (65,15) 0.97482 0.01721 0.00138 

 
(15,15) 

(2,2) (55,5) 0.98686 0.01312 0.00164 
(5,3) (60,10) 0.98900 0.01207 0.00148 
(7,4) (65,15) 0.98996 0.01194 0.00141 

 
(20,5) 

(2,2) (55,5) 0.98019 0.01306 0.00124 
(5,3) (60,10) 0.98423 0.01203 0.00111 
(9,4) (65,15) 0.98629 0.01190 0.00103 

 
(20,10) 

(2,2) (55,5) 0.95863 0.01303 0.00129 
(5,3) (60,10) 0.97068 0.01308 0.00110 
(9,4) (65,15) 0.97645 0.01297 0.00099 

 

 

 

 

 

 

 

 

 

 

 

 

Queueing Models and Service Management

99



 

Table 2. Estimation of the accuracy of the performance measures. EV-exact value,  
AV-approximate value. 

( , )S N  ( , , , )s R    avS  RR  av  
EV AV EV AV EV AV 

(10,10) 
(1,2,55,5) 2.257 2.641 0.536 0.509 3.279 4.010 
(2,3,60,10) 2.329 2.850 0.622 0.577 3.385 4.375 
(4,4,65,15) 2.236 2.823 0.798 0.722 3.196 4.300 

(10,15) 
(1,2,55,5) 2.257 2.641 0.536 0.509 3.279 4.010 
(2,3,60,10) 2.329 2.850 0.622 0.577 3.385 4.375 
(4,4,65,15) 2.236 2.823 0.798 0.722 3.196 4.300 

(15,10) 
(2,2,55,5) 3.396 4.165 0.549 0.511 5.434 6.926 
(5,3,60,10) 3.459 4.397 0.727 0.654 5.520 7.335 
(7,4,65,15) 3.265 4.181 0.860 0.766 5.146 6.912 

(15,15) 
(2,2,55,5) 3.396 4.165 0.549 0.511 5.434 6.926 
(5,3,60,10) 3.459 4.397 0.727 0.654 5.520 7.335 
(7,4,65,15) 3.265 4.181 0.860 0.766 5.146 6.912 

(20,5) 
(2,2,55,5) 4.387 5.390 0.507 0.473 7.371 9.336 
(5,3,60,10) 4.661 5.937 0.646 0.583 7.859 10.359 
(9,4,65,15) 4.425 5.689 0.838 0.743 7.389 9.856 

(20,10) 
(2,2,55,5) 4.387 5.390 0.507 0.473 7.366 9.333 
(5,3,60,10) 4.660 5.937 0.646 0.584 7.855 10.357 
(9,4,65,15) 4.425 5.689 0.838 0.743 7.387 9.854 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Melikov, Krishnamoorthy, Shahmaliyev

100



 
Table 3. Estimation of the accuracy of the performance measures. EV-exact value,  
AV-approximate value 

( , )S N  ( , , , )s R    LS   LO   RL   
EV AV EV AV EV AV 

(10,10) 
(1,2,55,5) 8.993 9.053 0.524 0.583 43.979

99 
43.716 

(2,3,60,10) 9.133 9.202 0.317 0.301 47.957 46.855 
(4,4,65,15) 9.228 9.301 0.230 0.186 52.891 51.684 

(10,15) 
(1,2,55,5) 13.18

5 
13.03

7 
0.506 0.583 43.918 41.681 

(2,3,60,10) 13.45
7 

13.39
1 

0.307 0.301 47.934 44.876 
(4,4,65,15) 13.63

5 
13.62

4 
0.224 0.186 52.876 49.696 

(15,10) 
(2,2,55,5) 9.071 9.146 0.524 0.583 43.872 40.477 
(5,3,60,10) 9.203 9.284 0.316 0.301 47.932 43.564 
(7,4,65,15) 9.281 9.359 0.230 0.186 52.876 48.258 

(15,15) 
(2,2,55,5) 13.39

4 
13.31

3 
0.510 0.583 42.865 43.239 

(5,3,60,10) 13.64
4 

13.63
3 

0.309 0.301 46.770 46.213 
(7,4,65,15) 13.77

6 
13.79

1 
0.225 0.186 51.871 51.174 

(20,5) 
(2,2,55,5) 4.450 4.535 0.532 0.582 42.806 41.568 
(5,3,60,10) 4.514 4.590 0.320 0.301 46.743 44.620 
(9,4,65,15) 4.562 4.630 0.232 0.186 51.854 49.503 

(20,10) 
(2,2,55,5) 9.101 9.177 0.524 0.583 42.766 40.580 
(5,3,60,10) 9.240 9.320 0.316 0.301 46.741 43.566 
(9,4,65,15) 9.320 9.399 0.230 0.186 51.854 48.297 

 
Now we consider the dependence of the performance measures on the reorder level for 

the following system parameters.  

 1 2 1 2 1= 60, =10, = 55, =15, = 0.2, = 0.5, = 0.3,        

 = 2, = 2, =1.5, = 20, =10, =1.S N R    

We conclude from Figure 5 that the average inventory level avS and perishability rate av
increases proportionally with the increase of reorder level s but becomes stable for the 
larger values. Additionally, the intuitive relation *av avS   holds true. As expected, 
reorder rate RR increases with the increase of reorder level s , because the inventory level 
reaches the threshold value more frequently for the larger values of s . Average queue size

sL as depicted in Figure 6, increases very slowly with the increase of s and remains almost 
full due to the high arrival intensity. Average orbit size oL on the other hand, does not 
depend nor on s neither on maximum queue length N . 
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Figure 5. Dependence of avS , av and RR on the reorder level .s  
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Figure 6. Dependence of sL and oL on the reorder level .s  

Finally, we conclude from Figure 7 that loss rates due to queue and orbit overflow pRL and
oRL increase very slowly and almost do not depend on s , while the loss rate due to 

impatience decreases with the increase of the reorder level s . The increase of pRL is 
explained by the growth of the average queue length, while the decrease of sRL is subject 
to the growth of the average inventory level, because with the higher avS zero inventory 
level becomes less probable. Loss intensity due to orbit overflow oRL is directly 
proportional to the average queue length avS and avL so that it increases with the growth 
of s . 

 

Queueing Models and Service Management

103



 

 

 
Figure 7. Dependence of pRL , oRL and sRL on the reorder level .s  
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4.2. Analysis of the models with infinite queue length or orbit size 

In this section, we compare the performance measures of the following two models:   

1. The model with finite queue L and infinite orbit .R   
2. The model with finite queue L and finite orbit .R   

We use the following parameter values in our calculations:  

 1 2 1 2 1=10, = 5, = 60, =15, = 0.2, = 0.5, = 0.3,        

 = 2, = 2, =1.5, =15.S    

Additionally, we assume =10, =N R  for the former model and = , = 2N R for the 
latter one. 

First, we consider the inventory related performance measures. We conclude from 
Figure 8 that avS , avG and RR are almost the same for both models. Such behavior is 
explained by the fact that these performance measures depend on the state of the inventory 
and are not related to the queue and orbit length. 
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Figure 8. Comparison of the inventory related performance measure  
with respect to s for partly infinite models 

Secondly, we analyze the customer related performance measures. As illustrated in 
Figure 9 average queue length sL and average orbit length oL are higher in the 
corresponding models with N and R being infinite. Average loss rate is higher in the 
model with finite orbit because of > 0oRL as opposed to the model with infinite orbit size 
where = 0oRL . 

Finally, we conclude from the comparisons that inventory related performance 
measures avS , av and RR are the same for both partly infinite models, but the customer 
related performance measures differ while preserving their change behavior.  
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Figure 9. Comparison of the inventory related performance measure  
with respect to s for partly finite models 

4.3. Optimization problem for model with infinite queue and infinite orbit size 

In this section we consider the long run total cost optimization problem for the model 
with =N  and =R  and apply SMA method to solve it. We will use the stochastic 
simulation to prove the accuracy of the results. 

Let’s consider the overall expenses of the system. We have the maintenance expenses 
per inventory item, per customer in the queue and orbit. Additionally, extra penalty is 
charged for the every lost customer. There are expenses for the delivery services that deliver 
the inventory replenishment orders. The delivery service charges for the shipping and per 
item carriage. 

The problem is to minimize the total cost by choosing the optimal delivery service d
and the reorder threshold s . We introduce following long run total cost function TC :  

( , ) = ( ( )) .r s av p av l ws s wo oTC s d K c S s RR c S c c RL c L c L         (4.1) 
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The parameters in (4.1) have following meanings:   

• d - Designates the delivery service. The number of delivery services to choose from 
is D , : = 0, ,d d D . The delivery service d is defined by the triple ( , , )r dK c .  

• K - predefined fixed shipping cost of the chosen delivery service.  
• rc - per item carriage cost of the delivery service.  
• sc - maintenance cost per inventory unit.  
• pc - per unit perishing cost.  
• lc - penalty per customer loss.  
• wsc - queue maintenance cost per customer.  
• woc - orbit maintenance cost per customer.  

We have the following delivery services ( = 8D ):  

  (0.5,1,0.5),(0.5,1,1),(0.5,2,0.5),(0.5,2,1),(1,1,0.5),(1,1,1),(1,2,0.5),(1,2,1)  

The list of the services is sorted by the lead intensity  and its cost. 
The system parameters and the cost function constants are chosen as follows: 

 1 2 1 2 1= 5, =10, = 50, = 30, = 0.2, = 0.7, = 0.4, = 2, = 0.5, =15,S          

 = 0.5, = 0.5, = 0.5, = 0.2, = 0.1.s p l ws woc c c c c  

We use the brute force method to find the optimal ( , )s d pair that minimizes the cost 
function TC . The SMA algorithm is used to calculate the system performance measures. 
To ensure the system stability we assume that the ergodicity condition is hold: 

1 1/ ( ) < 1  . The result of experiment is depicted in Figure 10. TC gets its minimal value 
at = 0, = 7s d and (0,7) = 6.56TC . 

 
            Figure 10. Long run total cost TC dependence on the reorder level s and 

delivery services d . 
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Although the optimal pair depends on the chosen parameters, in general, zero reorder 
level s lowers the average inventory level avS and minimizes the inventory cost and the 
reorder rate RR , while the higher delivery rate decreases the probability of the zero 
inventory and prevents the customer loss that in turn decreases the customer loss penalty 
cost. 

To prove the accuracy of the SMA we have run the same experiment, but applied 
Gillespie’s Direct algorithm for the stochastic simulation (see Gillespie [3]) to calculate the 
system performance measures. As expected, the optimal pair was the same = 0, = 7s d , 
while there was the minor difference in the value of the cost function (0,7) = 5.85TC . 

In conclusion, we have solved the cost optimization problem for the system using the 
SMA and demonstrated the dependence of TC on the delivery service and reorder threshold 
selection. We checked the accuracy of the results obtained by SMA using Gillespie’s 
stochastic simulation algorithm.  

4.4. Pros and Cons 

The main disadvantage of SMA is that it produces approximate results, while its 
accuracy is very high as confirmed by the numerical experiments. Additionally, due to its 
low complexity and computational efficiency SMA could be used in the calculation of the 
system performance measures, as well as, in optimization problems for the models with the 
higher parameter values and dimension.  

4.5. Discussions 

Let’s consider the behavior of the model based on the numerical results above. 
First, we consider the inventory related performance measures. When we increase the 
reorder level s the replenishment orders are made more frequently that results in the growth 
of the reorder intensity .RR  If the inventory is replenished frequently the probability of the 
zero inventory decreases and the average inventory level avS goes up. Therefore, the 
average perishing rate av increases as well according to the formula *av avS  . This 
logic is illustrated in the Figures 5 and 8. 
Secondly, we discuss the customer related performance measures. We observe the slight 
increase of the average queue length avL for the higher values of the reorder level s in 
Figures 6 and 9. This is explained with the increase of the average inventory level avS , 
because the higher avS means the lower probability of zero inventory and less customer loss 
due to impatience sRL . The average orbit length oL is not affected by the reorder level s
as it mostly depends on the parameter 3 as concluded from the formula (3.20).  

 
 

Queueing Models and Service Management

109



5. Conclusion 
The finite and infinite 3D PQIS models with positive service time and delayed 

feedback are studied in this paper. It is assumed that the customers either leave the system 
with/without purchasing an item or join the orbit for the decision making. When the 
inventory level is zero, customers join the system according to Bernoulli trial, while 
customers in the queue become impatient. The inventory replenishment policy belongs to
( , )s S class. 

The exact and approximate formulas are given for the calculation of the steady-state 
probabilities and performance measures of the system. Exact method is based on the solving 
of balance equations and is suitable only for the finite models. The approximate approach 
is based on the State Merging Algorithm (SMA) of Markov Chains and is applicable for 
both finite and infinite systems. The high accuracy of the given formulas is demonstrated 
using numerical experiments and the corresponding comparison tables are provided. The 
limitations and advantages of the SMA algorithm are shortly explained. 

The dependence of performance measures on the reorder level s is presented for the 
finite model. The performance measures of the partly-infinite ( =N   or =R  ) models 
are compared and described using graphical illustrations. 

Finally, optimization problem is solved for the fully infinite model ( =N   and 
=R  ). The dependence of long run total cost function TC on the reorder level s and 

different delivery services d is shown using 3D graph. 

5.1. Future work 

We still have some work left on the SMA algorithm for the future papers. First, we are 
working on the accuracy estimation of the SMA and we would like to develop the analytic 
formulas for this purpose. Currently, we estimate the SMA using experiments or compare 
with the results of the available methods and algorithms. Secondly, we think on the 
modification of the SMA to return the exact results. Thirdly, we apply the SMA on the 
different systems and perform experiments to find out the models the SMA works the best. 
We investigate the models with variable incoming intensity rate, MMPP (Markov modified 
Poissen process) that is the generalization of the studied model. We will present the results 
of our researches in the next papers.  
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