
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 

The classical age-replacement policy is proposed by Barlow and Proschan [2], in 
which an operating system is replaced at time of failure or at age T , whichever comes 
first. Another well-known preventive replacement policy proposed by Barlow and Hunter 
[1] is the classical periodic replacement policy (also called the block replacement policy), 
where an operating system is replaced by a new one at times kT (   ,3 ,2 ,1k ), and at 
failures. Afterwards, many authors have systematically studied and extended these two 
well-known replacement model, they become the most commonly used preventive 
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maintenance (PM) policies in reliability theory. The aim of optimal PM policies is to 
provide optimum system reliability/availability and safety performance at the lowest 
possible maintenance cost.  

In the modern marketplace, most products are sold with a warranty, thus, to 
incorporate various product warranties into the derivation of the optimal PM policy would 
be interesting and possibly useful. Jack and Schouten [16], Djamaludin and Murthy [15], 
Jung and Park [17], Chen and Chien [7], and Wu et al. [25] incorporate system warranty 
with various maintenance actions to investigate the performance of the optimal PM 
policies. Yeh et al. [26, 27], and Chien [8-11] analyzed the impacts of various warranties 
on the classical preventive replacement policies. However, all the warranty-replacement 
problems mentioned above are modeled under a continuous operating circumstance. In 
other words, since most of the warranty-replacement model are classified as 
continuous-time models, they will lose their validity in a discrete-time setting. In failure 
studies for airplane parts, the time to unit failure is often measured by the number of 
operation cycles to failure. In actual situations, jet fighter tires are replaced preventively 
after 4-14 flights, which may depend on the kind of use. In other cases, lifetimes are 
sometimes not recorded at the exact instant of failure but are collected statistically per day, 
per month, or per year. Therefore, in any case, it is interesting and possibly useful to 
consider discrete time processes. And after Nakagawa [23, 24] proposed a discrete time 
age-replacement policy, Chien [12, 13] and Chien and Zhang [14] incorporate the 
warranties into the replacement policy by considering the product is operating in a discrete 
time process: in Chien [12], the effects of a free-repair warranty (FRW) on the optimal 
discrete time periodic replacement policy is discussed; in Chien [13], the impacts of a 
renewing free-replacement warranty (RFRW) on the optimal discrete time age- 
replacement policy is investigated. Chien and Zhang [14] further analyzed a hybrid 
warranty policy for systems operating in discrete time. 

A rebate warranty is one of the most common types of warranty policies. Under a 
rebate policy, the manufacturer (seller) refunds a customer (buyer) some proportion of the 
sales price if the product fails during the warranty period. Common examples of products 
sold under rebate policies include batteries and tires. In this paper, a pro rata rebate 
warranty (PRRW) is considered for deriving the optimal discrete time age-replacement 
policy, and the salvage value of an un-failed system that due to preventive replacement is 
also considered. From the customer’s perspective, a mathematical formulation for the long 
term expected cost rate is developed. Under the increasing failure rate (IFR) assumption, 
the existence and uniqueness of the optimal age for preventive replacement (i.e., the 
optimal number of operation cycles for preventive replacement) such that the long-run 
expected cost rate is minimized is shown. Furthermore, the optimal ages for preventive 
replacement, and the corresponding cost rates for systems with and without PRRW are 
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compared analytically, and their structural properties are summarized.  
The reminder of this paper is organized as follows. In Section 2, the model 

assumptions are described, and mathematical formulations for the expected cost rates are 
established. Based on the cost models, the optimal number of operation cycles for 
preventive replacement for both a warranted, and a non-warranted system are derived, and 
their structural properties are presented in Section 3. These optimal replacement policies 
and their corresponding expected cost rates are compared analytically in Section 4. In 
Section 5, a special case of the discrete failure distribution is considered as a numerical 
example, and sensitivity analysis of effectiveness of the model parameters on the optimal 
policies are performed. Finally, some comments are concluded in Section 6. 

2. Mathematical Formulation 

In this section, cost models from the customer’s perspective are developed for both 
warranted, and non-warranted systems.  

2.1. Preliminaries 
Under the discrete time age-replacement policy, the system is replaced at the time 

when the thN (   ,2 ,1N ) operation cycle is completed, or is replaced at failure, 
whichever occurs first. More precisely, when the system fails at operation n ( N ), a 
failure replacement (corrective replacement) is performed with a downtime cost 0dC  , 
and a purchasing cost 0pC  . If the system passes through the cycle N and does not fail 
(i.e., the thN operation cycle is completed successfully), then a preventive replacement is 
carried out. Because a preventive replacement is a planned PM action, only the cost pC is 
incurred in this action. Therefore, under this model, the design variable is .N  

Without considering warranty, various replacement policies in discrete time have 
been investigated by researchers [19, 20, 23, 24]. However, because the system, that 
preventive replaced at the completion of thN operation cycle, is still operable, so the 
salvage value of an un-failed system should be considered in the cost model. It is 
reasonable to assume that the salvage value of a used (un-failed) system is proportional to 
its expected residual lifetime, thus, in this study, we define it as  ( )sv n N n N   , 
which is similar to the definition used in Kaio and Osaki [18] and Chien [11]. On the other 
hand, under a PRRW, the customer is refunded a proportion of the sales prices pC if the 
system fails within the warranty. Thus, the refund amount, ( )R n , is a function of the 
failure time n , and we define it as 
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Then, by the similar method to that of Chien [12], the cost model for operating the 
system in discrete time, in a long run, can be established. 

2.2. Cost model without warranty 

Without warranty, any two successive replacements of the system form a renewal 
cycle of the failure process, Figure 1 illustrates this case. 

Hence, the replacement cycle length (i.e., the renewal cycle length, denote by 0( )T N ) 
is 









,   if   ,
,   if   ,

)(0 NnN
Nnn

NT                             (2) 

and the total cost incurred in a renewal cycle (denote by )(0 NC ) is 
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Figure 1. Possible replacements without warranty. 

Thus, by (2) and (3), the long-run expected cost rate is 
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2.3. Cost model with warranty 

For a system purchased with the PRRW, the total cost incurred in a renewal cycle 
depends on whether a preventive replacement is scheduled within the warranty period or 
not. Thus, the cost model should be established for two cases: N W and .N W  

Case 1. N W   
When the operation cycle for preventive replacement of a system is scheduled after 

the warranty expiration, then there exist three possible replacement states, as shown in 
Figure 2. First, if the system fails within the warranty (i.e., the system fails at 
the thn operation cycle, where n W ), then a downtime cost dC , and a purchasing 
cost pC are incurred; also a refund amount ( )R n (see (1)) is gained due to the PRRW. 
Second, if the system fails after the warranty, but before the preventive replacement (i.e., 
the system fails at the thn  operation cycle, where W n N  ), then it incurs a downtime 
cost dC , and a purchasing cost pC , but without any gain due to the PRRW. Third, if the 
system does not fail before completing the thN operation (i.e., the system fails at 
the thn operation cycle, where n N ), then a preventive replacement is performed with 
cost pC , and the salvage value ( )sv n N  is also gained from that un-failed system. 

According to the above descriptions, the replacement cycle length, and the total cost 
in the renewal cycle (denoted by 1( )T N and 1( )C N , respectively) become 
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Figure 2. Possible replacements with PRRW when N > W.                           

and 
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Therefore, the long-run expected cost rate is 
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Case 2. N W  
When the operation cycle for preventive replacing a system is scheduled within the 

warranty period ,W all the replacements (preventive or corrective) are performed within 
the warranty. However, it should be note that if a preventive replacement is performed at 
the completion of operation cycle ,N no refund can be gained because such a replacement 
is scheduled, not resulting from failure. In this case, there exist two possible replacement 
states, as shown in Figure 3. First, if the system fails before the preventive replacement 
(i.e., the system fails at the thn operation cycle, where n N W  ), then a downtime cost 

dC , and a purchasing cost pC are incurred; and a refund amount ( )R n is also gained. 
Second, if the system does not fail before completing the thN operation (i.e., the system 
fails at the thn operation cycle, where ),n N  then a preventive replacement is 
performed at the completion of thN operation with cost pC , and the salvage value 

( )sv n N  is also gained.  

 
Figure 3. Possible replacements with PRRW when NW. 
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According to the above descriptions, the replacement cycle length, and the total cost 
in the renewal cycle (denoted by 2( )T N and 2( )C N , respectively) are  
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Then the long-run expected cost rate becomes 
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Also note that 
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from (7) and (10). 

3. Optimal Policies 

The main objective here is to derive the optimal number of operation cycles *
iN  for 

preventive replacement. 

C  Chiang, Chien

40



3.1. Optimal replacement policy without warranty 

For a system without warranty, from (4), we see that the inequalities 
0 0( 1) ( )CR N CR N  and 0 0( ) ( 1)CR N CR N  hold iff  

d

sp
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where   



 
N
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m mn nN pprNH
111)( , which is just the same intermediate function 

that used in Chien [13]. Then, the following Lemma concerning the properties of ( )H N is 
summarized below, which is required and helpful to examine the existence and uniqueness 
of the optimal *

iN .  

Lemma 1. Suppose that nr is strictly increasing in n (i.e. IFR), then ( )H n is also strictly 
increasing in .n Furthermore, 0lim ( ) (0) 0n H n H   and lim ( ) ( )n H n H    

1r   .   

Proof. See the Appendix of [13] for the detailed proof. 

Because most systems deteriorate due to the number of operations, the case that nr  
has IFR will be focused throughout this paper. In this case, the optimal number of 
operation cycles *

0N , for preventive replacing a system without warranty, can be easily 
obtained through (12), i.e.,  * *

0 0( 1) ( ),p s dH N C v C H N      and the property 
results are given in the following Theorem. 

Theorem 1. To consider salvage value of a system that operating in discrete time with an 
IFR nr , the following results that concerning the optimal *

0N are true. 

(i) When ,p sC v   *
0 0.N   

(ii) When ,p sC v    if     ,p s dH C v C   or equivalently 
r ( ) ( ),p d s dC C v C     then there exists a finite, unique *
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   and the resulting expected cost rate satisfies the inequality 
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Otherwise, *
0N    and the resulting expected cost rate is  *

0 0CR N   0CR    

Queueing Models and Service Management

41



 d pC C  . 

Proof. (i) When  sp vC , and by (4), we have 
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Thus 0( )CR N is strictly increasing in ,N and thus *
0 0.N    

(ii) When  sp vC , then (12) is equivalent to  ( 1) ( )p s dH N C v C H N     . 
And by Lemma 1, it is obvious that if     ,p s dH C v C   or equivalently 

     dsdp CvCCr , then there exists a finite, and unique *
0N (i.e., 

 *
00 N ) that satisfies  * *

0 0( 1) ( )p s dH N C v C H N     , which is equivalent to 
(13); further through algebraic manipulation, the resulting expected cost rate satisfies (14). 
Otherwise, *

0N    and       pd CCCRNCR  0
*
00 .  

3.2. Optimal replacement policy with warranty 

Again, to derive the optimal *
iN under PRRW, the two cases have to be investigated 

separately: N W and ,N W For ,N W let *
1N be the optimal number of operation 

cycles for preventive replacement that minimize the cost rate 1( )CR N . Then, the 
following lemma concerning *

1N can be obtained. 

Lemma 2. To consider salvage value for a system that operating in discrete time with an 
IFR nr and under the PRRW with period W , the following results concerning the 
optimal *

1N hold for   ,2 ,1 WWN . 

(i) When    
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(2) if      
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   and the resulting expected cost rate satisfies 
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Proof. (i) When    
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Thus 1( )CR N is strictly increasing in N ( W ), and thus *
1 1N W  . Put 1N W   

into (7), it yields (16). 

(ii) When    
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Thus, by (21) and Lemma 1,  
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because 1)(  rH . Then *
1N , and the resulting expected cost rate is as given 

by (19). 

Next, for WN  , let *
2N  be the optimal number of operation cycles for preventive 

replacement that minimize the cost rate )(2 NCR . Then, the following lemma concerning 
*
2N  can be obtained. 

Lemma 3. To consider salvage value for a system that operating in discrete time with an 
IFR nr and under the PRRW with period W , if   nd rnRC )(  is strictly increasing in n , 
then the following results concerning the optimal *

2N hold for WN  ,  ,2 ,1  . 

(i) When  sp vC , 0*
2 N . 

(ii) When  sp vC , the following two situations should be considered. 

(1) For    
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     where  R  is defined by (1). 

(2) For    
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function of .N Therefore, when p sC v   , then (0) p sC v      0 ; that is 

0)(  N  for all ,N which implies that 2( )CR N does not decrease in .N  Hence, 
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(ii) Further, from (10), the inequalities 2 2( 1) ( )CR N CR N   and 2( )CR N  )1(2 NCR  
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expected cost rate satisfies (23). 
On the other hand, (2) when  sp vC , and    
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(a) if  1 1
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this implies that there exists a unique *
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2( 1) 0N   , and the resulting expected cost rate satisfies (23). Otherwise, (b) 
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    ( ) 0.W  Thus WN *
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)( *
22 NCR )(2 WCR  is as given in (11). 

It is worthy noting that the condition p sC v   means that the purchasing cost of a 
new system is lower than the expected salvage value over its lifetime. That is, under this 
condition, the optimal replacement policy is always that the customer should preventively 
replace a new system when it is purchased. Theorem 1 and Lemma 3 confirm the state of 
affairs. Theorem 1 indicating that when p sC v   is true for a system without warranty, 
the optimal number of operation cycles for preventive replacing a product is *

0 0N  . 
Lemma 3 indicating that for a PRRW warranted system under the case ,N W  the 
optimal number of operation cycles for preventive replacement is *

2 0.N   Furthermore, 
from Lemma 2, it shows that for a PRRW warranted system under the case ,N W  the 
optimal operation cycles for preventive replacement is 1*

1 WN because 
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sv . In fact, however, it seems more reasonable that the 
sale price of a new system should be larger than its expected salvage value over its 
lifetime. Therefore, the following discussion on the optimal policies in the remainder of 
this paper will focus on the condition  sp vC . 

In the previous discussions of Lemmas 2 & 3, the local optimal replacement cycles 
for a PRRW warranted system in discrete time were derived under the 
constrain N W and .N W However, in practice, the preventive replacement timing 
should not be pre-determined to be in a certain interval. Therefore, it is important to 
investigate the global optimal replacement cycles *

WN without any constraint. The global 
optimal number of operation cycles *

WN  for preventive replacement is defined as: 
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Combining Lemmas 2 and 3, the following theorem concerning the *
WN  can be 

obtained. 
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Theorem 2. To consider salvage value for a system that operating in discrete time with an 
IFR nr and under the PRRW with period W , if  sp vC , and  ( )d nC R n r is strictly 
increasing in n , then the following results hold. 

(i) For    



 s
W

m mn np vWpC
1 1

, then WNW  *1 , and the resulting expected 
cost rate satisfies the inequality (23). 

(ii) For    



 s
W

m mn np vWpC
1 1

, then 

(1) if  1 1
( ) [ ]W

p n s dm n m
H W C p W v C

  
    , then *1 WN W   and the 

resulting expected cost rate satisfies the inequality (23). 

(2) if  1 1
( ) [ ]W

p n s dm n m
H W C p W v C

  
    , then *

WN W  and the 

resulting expected cost rate is given by (11).  

(3) if  1 1
( ) [ ] ( )W

p n s dm n m
H W C p W v C H

  
      , then *

WNW   , 

and the resulting expected cost rate satisfies the inequality (18). 

(4) if  1 1
( ) [ ]W

p n s dm n m
H C p W v C

  
     , then *

WN  and the resulting 

expected cost rate is given by (19). 

Based on Theorem 2, note that when the expected salvage value over the lifetime of a 
new system is larger than a threshold (i.e.,  WpCv W

m mn nps  






1 1
 ), the system 

should be preventively replaced before the warranty expires, to take advantage of the 
salvage value. However, if  WpCv W

m mn nps  






1 1
 , then the timing to perform a 

preventive replacement may be scheduled before or after the warranty expiration; the 
condition for whether a preventive replacement is performed within the warranty period or 
not depends on the relationship between the values   ds

W

m mn np CvWpC ][
1 1

 




  

and ( ).H W  Carefully checking the term   ds
W

m mn np CvWpC ][
1 1

 




, we find 

that as the downtime cost dC or the salvage value per cycle sv become larger, then 

  ds
W

m mn np CvWpCWH ][)(
1 1

  




 becomes more likely and 

  ds
W

m mn np CvWpC ][
1 1

 




 becomes smaller. Thus the optimal policy is that the 

system should be replaced preventively before the warranty expires to avoid system 
failures, or to take advantage of the salvage value of an un-failed system. Otherwise, the 
optimal timing for preventive replacement should be greater than the warranty period to 
take advantage of the warranty coverage. These properties are reasonable, and make sense. 
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4. Comparisons 

In this section, the impact of a PRRW on the optimal discrete age-replacement policy 
is investigated by comparing the expected cost rates )(NCRi  as well as the optimal 
number of operation cycles *

iN  for preventive replacement. First, we have the following 
corollary results. 

Corollary 1. 0 1( ) ( )CR N CR N for 0,N W  and 0 2( ) ( )CR N CR N for any 
WN 0 . 

Proof. From (4), and (7), it is obviously that 

0

1

)()(

1

1 1

10 
























 













N

m mn
n

W

m mn
n

p

p

W

p
C

NCRNCR                  (27) 

for any 0WN . 

And from (4), and (10), 

 

0)()(

1

1 11

20 































 

N

m mn
n

N

m

m

n
n

N

n
n

p

p

W

ppNW
C

NCRNCR        (28) 

for any WN 0 . 

Corollary 1 means that given any fixed number of operation cycles N for preventive 
replacement, the expected cost rate for a system without warranty is always greater than 
the expected cost rate for a system with PRRW. This results in turn implies that, when the 
optimal policies are attained for both cases (i.e., *

0N and *
WN ), the optimal expected cost 

rate for a warranted system results in a smaller value.  
   Next, the difference between *

0N and *
WN is compared to show the effect PRRW. 

Through Theorems 1 and 2, ( )H W plays an important role in the comparison of *
0N with 

*
WN , and we have the following corollary results. 
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Corollary 2. To consider salvage value for a system that operating in discrete time with 
an IFR nr and under the PRRW with period W , if p sC v   and  ( )d nC R n r is 
strictly increasing in n , then the optimal *

0N and *
WN , which minimize the long-run 

expected cost rate, have the following properties. 

(i) When    



 s
W

m mn np vWpC
1 1

 

(1) if   ds
W

m mn np CvWpCWH ][)(
1 1

  




, then *

0
* NNW W  . 

(2) if   dspds
W

m mn np CvCWHCvWpC )()(][
1 1

  




, then  

0 *
0

* NWNW  . 

(3) if   dsp CvCWH )( , then WNNW  *
0

*0  or **
00 WNN  W . 

(ii) When    



 s
W

m mn np vWpC
1 1

 

(1) if   dsp CvCWH )( , then *
0

* NWNW  . 

(2) if   dsp CvCWH )( , then WNNW  *
0

*0  or **
00 WNN  W . 

Proof. By Theorem 1, the optimal *
0N   can be obtained by solving  )1( *

0NH  
   *

0NHCvC dsp   . Because )(nH  is strictly increasing in n , thus if 

  dsp CvCWH )( , then WN *
0 ; otherwise, WN *

0 .  

(i) When   s
W

m mn np vWpC  



1 1
, because  1 1

[ ]W
p n s dm n m

C p W v C

  
    

 p s dC v C    for any 0W , thus we may divide the value of )(WH  into 3 

regions. First, (1) if  1 1
( ) [ ] ,W

p n s dm n m
H W C p W v C

  
    then WN *

0 and 
*
WN W are hold by Theorems 1 and 2; and since )(nH  is strictly increasing in n , thus 

the result * *
0WW N N  is true. Next, (2) if  1 1

[ ]W
p n s dm n m

C p W v C

  
    

 ( ) p s dH W C v C    , then *
0N W and *1 WN W  by Theorems 1 and 2, thus 

*
0

*0 NWNW   is true. Finally, (3) if   dsp CvCWH )( , then *1 WN W  and 
*
0N W by Theorems 1 and 2; so it could be * *

00 WN N W   or * *
00 WN N  .W  

On the other hand, (ii) when    



 s
W

m mn np vWpC
1 1

, the Theorem 2 shows 

that *
WN  is always greater than or equal to .W  By the similar way, we may divide the 

value of ( )H W into 2 regions. Thus, by Theorems 1 and 2, (1) if 
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)(WH   dsp CvC  , then *
0

* NWNW  ; (2) if  ( ) p s dH W C v C   , then it 

could be * *
00 WN N  W or **

00 WNN  .W  

To give a better illustration for the Corollary 2, Figures. 4 and 5 are provided to show 
the relationship between optimal *N and ( ).H W  It indicating that adding a PRRW to a 
system not only reduces the long-run expected cost rate, but also effects the location of the 
optimal number of operation cycles for preventive replacement. More precisely, when the 
optimal *

0N for a system without warranty is greater than W , a PRRW with period W  
will shorten the optimal *

WN for preventive replacement. On the other hand, if the 
optimal *

0N is less than ,W  then a PRRW with period W will also make the optimal 
*
WN for preventive replacement within the warranty, but is may be that * *

0WN N W  or 
* *
0 .WN N W   Figure 6 is a combination of Figures 4 and 5 for the purpose of further 

illustration in a different perspective. 

 
 
Figure 4. Relationship between optimal replacement ages (operation cycles) and  
H(W), when . 
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Figure 5. Relationship between optimal replacement ages (operation cycles) and  
H(W), when  

 
Figure 6. A diagram description for the Corollary 2. 

Furthermore, the difference between the optimal cost rates provides a measure of the 
value of a PRRW. To study the variation in the magnitude of savings in the expected cost 
rate by PRRW, we can define 
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 *

00

**
00

NCR
NCRNCR

CR W
 ,                         (29) 

where    * *
1 1WCR N CR N when * *

1 ,WN N and    * *
2 2WCR N CR N when * *

2.WN N  

That is, CR provides a measure of the value of PRRW, and it will be evaluated through 
a numerical example in the next Section. 

5. A Numerical Example 

This section investigates the sensitivity of the model parameters on the optimal 
discrete age replacement policy. Suppose that the failure distribution of a system operating 
in discrete time is a negative binomial one with a shape parameter of 2; that is, 

12  n
n qnpp ,   ,2 ,1n ,                          (30) 

where pq 1  ( 10  p ). Then, the mean number of operation cycles to failure is 
pq /)1(  ; the failure rate is )/(2 qnpnprn  , which is strictly increasing from 2p  

to ;p and the function ( )H n becomes   2[ 1 ] ( 1).nn pq q q np    Note that 
0)0( H , ( ) ,H q  and ( 1) ( ) 0H n H n   for 1,  2,  3,  n   can be shown. Thus 

( )H n is strictly increasing in n , and follows Lemma 1. This interesting discrete 
distribution was first introduced by Nakagawa and Osaki [24]. Nakagawa [23, p. 81] also 
applied this model as a discrete failure distribution when he discussed the replacement and 
maintenance policies. 

Fix the warranty period 20W  , and the purchasing cost 200pC  . The resulting 
optimal replacement policies, and corresponding expected cost rates, for both without 
warranty, and with a RFRW, are compared under various p , dC , and sv . The numerical 
calculation results are summarized in Table 1. 
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Table 1. Numerical results under various p , dC , and sv .  

 

 

(: undefined) 
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Below are a few points summarized on the basis of Table 1. 

(1) Under the same failure distribution, both *
0N and *

WN decrease as dC increases,   
or as sv increases. This result is reasonable because a system with a higher 
downtime cost (or with a higher salvage value) should be replaced preventively 
more early to avoid failures (or to take advantage of the value of residual life). 
Moreover, it is also intuitive that *( )i iCR N ( 2 ,1 ,0i , and W ) are increasing 
(decreasing) as dC ( sv ) increases. This result can be easily verified analytically 
through (4), (7), and (10). 

(2) These numerical results are consistent with the characteristics identified in     
Theorems 1 & 2, and Lemmas 2 & 3. For example, when 1/10p  or 1/8, and 

200dC , sv =1, the optimal 0N calculation result is infinite (i.e., *
0N   ) 

because the  H  calculated value is never larger than the  p s dC v C value; 
on the contrary, under the cooperating conditions of other parametric values, the 
condition of  H    p s dC v C can be achieved, thus the *

0N value will be 
finite (i.e., *

0N ), the details of this part were illustrated in Theorem 1. When 
1/15p  and 8sv  or 10, or when 1/12p  and 10sv  , the optimal 0N and 

2N calculation results are 0 (i.e., * *
0 2 0N N  ) because the condition of 

sp vC   is satisfied; on the contrary, in the case of other parametric values, pC  
is bigger than sv , therefore both *

0N and *
2N are greater than or equal to 1 (that 

is 1*
0 N , 1*

2 N ), with details as illustrated by Theorem 1 and Lemma 3. As for 
the calculation results of *

1N and *
WN , they are also consistent with the 

characteristics as described in Lemma 2 and Theorem 2, and thus are not 
elaborated here. 

(3) By carefully observing these numerical calculation results, we also found that it 
confirms the advanced findings as proposed in Corollaries 1 & 2. Although the 
property proposed in Corollary 1 cannot be directly seen in Table I, however the 
authors found that 0 2( ) ( )CR N CR N for 1 20N  and 0 1( ) ( )CR N CR N  
for 21N  , these are all consistent the characteristics proposed in Corollary 1. 
Regarding the characteristics described in Corollary 2, they can be directly found 
in the Table I. For example, in the case of a certain fixed parameter combination, if 
the calculation value of *

0N is greater than the warranty period W (i.e., 20*
0 N ), 

then the calculated value of *
WN must be smaller than *

0N , it may be 
*
0

*20 NNW   or *
0

* 20 NNW  ; however, if the calculated value of *
0N is less 

than or equal to W (i.e., 20*
0 N ), then *

WN is also less than or equal to W , but 
the relationship between *

WN and *
0N is uncertain, it can be * *

0 20WN N  or 
20**

0  WNN . These are presented as shown in Table I. The above phenomena 
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and the properties mentioned in Corollary 2 are completely consistent. 

(4) CR , as shown in Table I, is defined by (29), and it represents the percentage of 
saved cost by using a system with warranty (i.e., PRRW), rather than a system 
without warranty. It can be found from Table I that, the cost saving percentage is 
7.18% at least and can be up to 28.23%. Hence, we can find the benefits of 
operating a system in discrete time process with PRRW for the implementation of 
the optimal age replacement policy. 

(5) We consider the case 1/10p  (i.e., 19  ) for the purpose of verification the 
Figures 4 and 5. Fixed ,W pC and dC at 20, 200 and 200, if 6sv  , then it match 

the condition of Figure 4 (i.e.,  1 1
136.23 114W

p n sm n m
C p W v 

  
     , 

because  1 1
[ ] / 0.111,W

p n s dm n m
C p W v C

  
    ( ) / 0.43p s dC v C   and  

( ) 0.363,H W  thus it also satisfies the condition of Region 2; further from Table 1, 
we observe that *

0 26N  and * 16WN  , thus it confirms the fact * *
00 WN W N   . 

If 10,sv  then it match the condition of Figure 5 (i.e.,  

 1 1
136.23 190,W

p n sm n m
C p W v 

  
     because ( ) / 0.05p s dC v C    

and ( ) 0.363,H W  thus it also satisfies the condition of Region 2; further from 
Table 1, we observe that *

0 4N  and * 6,WN  thus it confirms the fact 
* *
00 .WN N W    

6. Conclusion Remarks 

Based on the phenomena observed from the above numerical calculation results as 
well as the technical analysis, we can further explain the connotations and summarize the 
practical information for the product users. 

(1) When downtime cost dC is bigger, no matter whether the system has a PRRW or 
not, its preventative replacement time should be as early as possible, as it can avoid 
the high price the system user has to pay due to unexpected breakdown. On the 
other hand, when system residual life’s salvage value sv is higher, no matter 
whether the system has a PRRW or not, its preventative replacement time should 
be also as early as possible, as it can allow the system user to enjoy the benefits of 
the salvage value of the preventively replaced system (since the product can 
operate normally because it has not been broken down). 

(2) The optimal time of the preventive replacement of a system is subject to the 
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availability of the PRRW service of the system. When the calculation result of the 
optimal preventive replacement time of a system without warranty is out of the 
warranty period (i.e., *

0N W ), then, if the system is changed to have the PRRW 
service, the optimal preventive replacement time *

WN will become earlier, namely, 
* *

0WW N N  or * *
0.WN W N   When *

0N calculation result is before the 
termination of the warranty period (i.e., WN *

0 ), then *
WN is also before the end 

of the warranty period (that is, * *
0WN N W  or * *

0 WN N W  ). This suggests 
that, if the system has a PRRW service, then the optimal preventive replacement 
time will be close to the end of warranty period, or even within the warranty period, 
as it can enjoy the benefits of the PRRW service of the system. 

(3) When system has a warranty service, this usually means the consumer has to bear 
more costs; that is, the price of buying a system with warranty is higher than the 
price of buying a system without warranty. CR is just to measure the percentage 
of saved operating cost of using a system with warranty than a system without 
warranty. This can provide a reference to the system purchaser in deciding whether 
it is worth spending more money to buy a system with a warranty service. 

The above messages are believed as considerably useful to the system user in 
determining whether to buy systems with PRRW service or not, as well as the 
implementation of the optimal age replacement policy. 
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