
1. Introduction

Markov decision processes (MDPs) give a powerful yet simple tool to formalize and
solve decision problems and are commonly used in a wide variety of fields from machine
learning (see Kearns and Singh [11]) through telecommunication (see Altman[2]) to finance
(see Bäuerle and Rieder [3]). One of the biggest issues when using MDPs is known as state
space explosion, that is, the number of states of the MDP usually grows exponentially with
the number of variables of the analysed system. Because of this, the number of states in
the MDP can easily increase to a point where the classical MDP solving methods cannot
be used. To overcome this problem, some techniques have been developed. One possibility
is to prove that the optimal policy in the MDP has threshold form, which means that the
optimal decision in any state can be determined based on whether a certain parameter is
above a fixed value (threshold). In this case, finding the threshold is enough to solve the
optimization problem. For instance, accepting requests to a queue may be optimal until the
queue length reaches a certain value. See e.g. Kocaga and Ward [12] or Efrosinin [8] for
more examples. Another noteworthy approach is presented in Boutilier et al. [6], where
more efficient solution methods for MDPs with factored representations are considered.
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These cannot be applied, however for MDPs that are infinite or cannot be factorized.
Apart from exact optimal solutions, one can get a quasi-optimal solution by using certain

approximation techniques. One possible approach is the truncation of the state space. This
may happen based on the physical model (e.g. the size of the buffer is constrained), as in
Slegers et al. [17] and Jagannathan et al. [10] for example. Alternatively, one can truncate
based on only mathematical considerations as discussed by Altman [1]. Another interesting
method is presented in Ng and Jordan [16], where a so-called deterministic simulative model
is introduced. The essence of this model is that the original MDP is transformed in such a
way, that transitions of the new model all become deterministic.

In this work, we propose an efficient reduction method that can be used for MDPs which
are composed of a finite subset of states with decisions and a finite or infinite subset of states
without decisions. More specifically we give a method that compresses the MDP to the size
of the subset with decisions. The presented method requires that some important parameters
of the MDP can be calculated efficiently. We also show how to use the presented reduction
method for infinite state MDPs with QBD, M/G/1-type and G/M/1-type structures, which
are the most prevalent classes of infinite MDPs in queueing problems.

The problem of reducing the size of the state space of such systems has been considered
in Mészáros and Telek [14], but the solution proposed there was suboptimal in the sense that
the reduced state space was much larger than the set of states with a decision. The solution
proposed here is optimal in this sense.

The rest of the paper is organized as follows. The paper starts with an example in Sec-
tion 2 to motivate the forthcoming analysis. Section 3 provides a summary of MDPs. The
parameters of the MDP compression method are provided in Section 4, while the compres-
sion method is stated and proved in Section 5. The special cases of infinite MDPs with
M/G/1 type and G/M/1 type structures are provided in Section 6, whose reward parameters
a computed in Section 7.

2. A Motivating Example

The problem considered in this paper has a strong practical motivation which is detailed
in Bodrog et al. [5] and Mészáros and Telek[14]. Here we summarize the problem and the
related model for completeness.

In case of multi-server systems with identical but state dependent servers, it is an in-
teresting optimization problem to properly assign new incoming jobs with one of the free
servers, if more than one server is idle at customer arrival. Consider a simple queueing sys-
tems with multiple MAP servers, where the incoming customers can be freely assigned to a
service unit in case of more than one available free servers.

In particular, Mészáros and Telek [14] consider the optimal control of MAP/MAP/n
queues. The simplest version of such models is the M/MAP/2 queue where customers arrive
according to a Poisson process with rate λ, the service process of each server is a MAP with
two states characterized by the matrix pair (S0,S1). The associated state transition structure
is

C  Mészáros, Telek

2



Q(a) =




L0 F 0(a) 0 · · ·
B1 L1 F 1 0 · · ·
0 B2 L F 0
... 0 B L F

. . .
. . . . . . . . . . . .




,

where

L0 = −λI ⊗ I,F 0(a) = λ
(
(I ⊗ I)P (a), (I ⊗ I) (I − P (a))

)
,

B1 =

(
I ⊗ S1

S1 ⊗ I

)
,L1 =

(
−λI ⊗ I + I ⊗ S0 0

0 −λI ⊗ I + S0 ⊗ I

)
,

F 1 = λ

(
I ⊗ I
I ⊗ I

)
,B2 =

(
I ⊗ S1

S1 ⊗ I

)
,L = −λS0 ⊕ S0,

F = A1 ⊗ I ⊗ I,B = I ⊗ S1 + S1 ⊗ I .

and the matrix which is responsible for the decision upon customer arrival to the idle system
is

P (a1) = diag (1/2, 1, 0, 1/2) and P (a2) = diag (1/2, 0, 1, 1/2) .

According to matrix P (a), at a customer arrival to the empty system the customer is
directed to the server in phase 1 by choosing action a1 and to the server in phase 2 by
choosing action a2, if the servers are in different phases. If idle servers are in the same
phase, the service units are chosen evenly.

The associated reward matrix

C(a) =




I
1
2
I

0
0

. . .




,

which is decision independent, intends to maximize the server idle time.
As an interesting aside, we note that the counter intuitive conclusion gained by the

analysis of this model in Bodrog et al. [5] is that it is worth choosing the slower server,
because it results in a better system state for higher levels of system saturation.

3. Theoretical Background

3.1. Markov Decision Processes

In the paper, we consider continuous time, time-homogeneous, non-discounted, MDPs
with the following definition.
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Definition 3.1. Let X(t) be a continuous time Markov chain with state space S, A a set
of decisions, α0 an initial probability vector, Q(a) a decision dependent generator matrix
satisfying Q(a)1 = 0 for ∀a ∈ A (where 1 is the column vector of 1s with appropri-
ate size), C(a) a decision dependent diagonal reward rate matrix. We say that the tuple
(S,A, α0,Q(a),C(a)) is a continuous time Markov decision process.

For such MDPs the usual optimization problem is to find a policy (state-decision map-
ping) π∗(s) ∈ {π(s) : S → A} such that

π∗ = argmax
π

Eπ

[
lim
T→∞

1

T

∫ T

t=0

CX(t),X(t)(π(X(t))dt

]
.

Throughout the paper we assume that for every policy the Markov model is composed of
exactly one communicating block and potentially one transient block. In this case, the
optimal policy can also be expressed as

π∗ = argmax
π

α(π)C(π)1, (1)

where α(π) is the steady state probability vector for policy π, that satisfies,

α(π)Q(π) = 0, α(π)1 = 1,

where 0 is the column vector of 0s of appropriate size (see Howard [9]).
The definition of MDPs does not constrain the sign of the elements of the C(a) reward

matrix, however offsetting C(a) with a constant value c does not change the optimal policy
since for any policy π

α(π) (C(π) + cI) 1 = α(π)C(π)1 + c,

that is, the optimal policy is the same for an MDP with reward matrix C(a) and C′(a) =
C(a)+ cI, ∀c ∈ R, therefore in the following we assume that mina,i C(a)ii > 0, that is, the
reward rate in every state is positive for every decision.

3.2. Basic transformation of MDPs

Our main goal is to examine MDPs for which the state space S can be partitioned into
two disjoint subsets SU and SD (SU ∪ SD = S,SU ∩ SD = ∅) where SU is finite and
contains all the states in which decisions can be made and SD is potentially infinite and
contains only states where decisions are not made, or decisions have the same effect (i.e.,
Qij(ak) = Qij(a�), ∀i, j ∈ SD, k, � ∈ A). Without loss of generality we assume that the
states in SU have lower indexes than the states in SD (i.e., i < j, ∀i ∈ SU , j ∈ SD), thus the
Q(π) generator matrix and the C(π) reward-rate matrix have the following block structure

Q(π) =

(
QU (π) QUD(π)
QDU QD

)
, C(π) =

(
CU (π) 0

0 CD

)
, (2)
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where π in the argument indicates that the respective part of the matrix depends on the
actual policy. In the rest of the paper we assume that SD is transient with finite sojourn time,
consequently QD is non-singular and the (i, j) element of (−QD)−1 is the mean time spent
in state j ∈ SD before leaving SD starting from i ∈ SD.

3.2.1. Transformation of MDPs with no decisions in SD

Let α(π) be the stationary probability vector of the Markov chain with generator Q(π).
Then α(π) is the solution of the linear system α(π)Q(π) = 0 with normalizing equation
α(π)1 = 1. Let αU(π) and αD(π) be the parts of vector α(π) associated with subsets SU

and SD, respectively. Using (2), the partitioned form of the linear system is

αU(π)QU (π) + αD(π)QDU = 0

αU(π)QUD(π) + αD(π)QD = 0,
(3)

from which we obtain a linear system for αU

αU(π)(QU (π)−QUD(π)QD
−1QDU ) = αU(π)Qc(π) = 0, (4)

where
Qc(π) = QU (π) +QUD(π)(−QD)−1QDU . (5)

The Markov chain with state space SU and generator Qc(π) is referred to as censored
Markov chain. It is obtained from the original Markov chain by “switching off the clock
when the Markov chain visits SD and switching on the clock when the Markov chain visits
SU” (see Latouche and Ramaswami [13]).

The censored Markov chain defines the stationary probability of the states in SU through
(4) apart from a normalizing constant, because

∑
i∈Su

αi(π) = αU(π)1U is not known based
on (4). We can also express αD(π) from (3) as

αD(π) = αU(π)QUD(π)(−QD)−1, (6)

from which

1 = α(π)1 = αD(π)1 + αU(π)1 = αU(π)(1 +QUD(π)(−QD)−11). (7)

Using (6), we can rewrite (1) as

π∗ = argmax
π

α(π)C(π)1

= argmax
π

αU(π)CU (π)1 + αD(π)CD(π)1

= argmax
π

αU(π)
(
CU (π)1 +QUD(π)(−QD)−1CD1

)
(8)

Queueing Models and Service Management

5



4. Parameters for the MDP Compression Method

In this section, we compute some measures of interest that are needed for the MDP
compression method.

Let us consider a continuous time MDP with partition SU (states with decision) and SD

(states with no decision). For i ∈ SU , let ρSU\i be the time to visit a state in SU different
from i, that is

ρSU\i = min(t|X(t) ∈ SU \ i).
Based on the decision dependent state partitioning we define the P (π) matrix and the τ(π)
and c(π) vectors by their elements as follows:

P ij(π) = Pr(X(ρSU\i) = j | X(0) = i), (9)
τi(π) = E[ρSU\i | X(0) = i], (10)

ci(π) = E[

∫ ρSU\i

t=0

CX(t)X(t)dt | X(0) = i], (11)

where i, j ∈ SU and i �= j. That is, assuming policy π, P ij(π) is the probability that the
process starting from i ∈ SU first enters to SU \ i in state j, τi(π) is the expected time
to the first visit in SU \ i and ci(π) is the expected reward accumulated until this visit.
P (π)ii = 0 by definition. The following theorem expresses P (π), τ(π) and c(π) based on
the partitioned description of the MDP.

Theorem 1. P (π), τ(π), and c(π) can be obtained as

P (π) = (−diagm〈Qc(π)〉)−1(Qc(π)− diagm〈Qc(π)〉) (12)

τ(π) = (−diagm〈Qc(π)〉)−1(1 +QUD(π)A1), (13)

c(π) = (−diagm〈Qc(π)〉)−1(CU (π)1 +QUD(π)M1), (14)

where Qc(π) = QU (π) + QUD(π)(−QD)−1QDU , A = (−QD)−2QDU , M =
(−QD)−1CD(−QD)−1QDU and diagm〈〉 is the operator that creates a diagonal matrix
from an input matrix by setting all its non-diagonal elements to zero.

Proof. Although the formulas for P (π) and τ(π) can be derived alternatively by an easier
approach, we will use a unified approach, for all three measures. Let ρSU

be the first time
when the process visits SU . We define matrix G(t) such that for i ∈ SD and j ∈ SU ,
Gij(t) = Pr(X(ρSU

) = j, ρSU
< t|X(0) = i) and matrix g(t) as g(t) = d

dt
G(t). That is,

Gij(t) is the probability that the process starting from state i ∈ SD will visit SU before time
t and the first visit will be to state j ∈ SU . We can express gij(t) based on the first state
transition as

gij(t) = −QDiie
QDiit

QDU ij

−QDii

+

∫ t

τ=0

−QDiie
QDiiτ

∑
k,k �=i

QDik

−QDii

gkj(t− τ)dτ. (15)

C  Mészáros, Telek

6



Here −QDiie
QDiiτ corresponds to the density that the first state transition happens at time

τ ,
QDU ij

−QDii

is the probability that the process goes directly to state j at the first transition and
∑

k,k �=i

QDik

−QDii

gkj(t− τ) is the probability density that the process goes to some other state
in QD and it enters SU in state j at time t− τ .

For the Laplace transform of gij(t), g∗
ij(s) =

∫
t
e−stgij(t)dt we get

g∗
ij(s) =

−QDii

s−QDii

(
QDU ij

−QDii

+
∑

k∈SD,k �=i

QDik

−QDii

g∗
kj(s)

)
.

By multiplying both sides by s−QDii and adding QDiig
∗
ii(s) we obtain

sg∗
ij(s) = QDU ij +

∑
k∈SD

QDikg
∗
kj(s),

which can be written in matrix form as

sg∗(s) = QDU +QDg∗(s), (16)

from which
g∗(s) = (sI −QD)−1 QDU . (17)

Since QDU and QD are policy independent, g∗(s) is policy independent as well. We define
Gij =

∫∞
t=0

gij(t)dt = Pr(X(ρSU
) = j | X(0) = i ∈ SD), which is the probability that

the process starting from state i ∈ SD enters SU in state j. From G =
∫∞
t=0

g(t)dt =
lims→0 g

∗(s) and (17) we have

G = (−QD)−1QDU . (18)

We note here that, since the generator of the MDP is stationary, and QD is transient,
that is, Pr(ρSU

< ∞| X(0) = i) = 1, ∀i ∈ SD, thus G1 = 1.
From the moment generating property of the Laplace transform (see Bulmer [7]) we

also have

Aij
def
= E[ρSU

I{ρSU
<∞,X(ρSU

)=j}|X(0) = i] = − d

ds
g∗

ij(s)
∣∣
s=0

.

By differentiating (16) according to s in s = 0 we obtain G = −QDA, from which

A = (−QD)−1G = (−QD)−2QDU . (19)

Similar to Gij(t) we define Kij(r) as

Kij(r) = Pr

(
X(ρSU

) = j,

∫ ρSU

t=0

CDX(t),X(t)dt < r|X(0) = i ∈ SD

)
, (20)
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that is, Kij(r) is the probability that the process starting from state i will visit SU before
reward r is accumulated, and the first visit will be to state j ∈ SU . In a similar fashion to
gij(t) we express kij(r) =

d
dr
Kij(r) based on the first state transition as

kij(r) =
−QDii

CDii

e

QDii

CDii

rQDU ij

−QDii

(21)

+

∫ r

u=0

−QDii

CDii

e

QDii

CDii

u ∑
k∈SD,k �=i

QDik

−QDii

kkj(r − u)du.

Compared to (15), the difference is that instead of the elapsed time we consider the re-
ward accumulated up to the first state transition, which is exponentially distributed with rate
−QDii

CDii

. Following the same steps as in the case of gij(t) we get that the Laplace transform

of k(r), k∗(s), satisfies
sCDk∗(s) = QDU +QDk∗(s). (22)

Just like g∗(s), k∗(s) is also independent of the actual policy, since it depends on the process
behaviour during a visit in SD. From (22) we have

K
def
= lim

r→∞
K(r) =

∫ ∞

r=0

k(r)dr = lim
s→0

k∗(s) = (−QD)−1QDU ,

where
Kij = Pr(X(ρSU

) = j |X(0) = i ∈ SD) = Gij.

Similar to A, we introduce

M ij
def
= E

[
I{X(ρSU

)=j}

∫ ρSU

t=0

CDX(t),X(t)dt
∣∣∣X(0) = i ∈ SD

]
= − d

ds
k∗

ij(s)

∣∣∣∣
s=0

,

which can be obtained from the derivative of (22) in s = 0, from which

CDK = −QDM ,

from which
M = (−QD)−1CD(−QD)−1QDU . (23)

Having the G,A,M matrices, describing the behaviour of the process in SD, we are ready
to express P (π), τ(π) and c(π). The required derivations follow the same pattern. In each
cases the formulas will be broken up into three terms according to the following three cases:

• Case 1: the process moves to state j ∈ SU \ i during the first state transition.

• Case 2: the process first moves to k ∈ SD, spends some time in SD, then enters SU in
state j �= i.
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• Case 3: the process first moves to k ∈ SD, spends some time in SD, then enters SU in
state i. This case adds a recursive term to the formulas.

We start with P ij(π) for i �= j, which gives the probability of entering set SU \ i in state
j ∈ SU when the process starts in i ∈ SU :

P ij(π) = Pr(ρSU\i < ∞, X(ρSU\i) = j | X(0) = i) =

QU ij(π)

−QU ii(π)︸ ︷︷ ︸
Case 1

+
∑
k∈SD

QUDik(π)

−QU ii(π)
Gkj

︸ ︷︷ ︸
Case 2

+
∑
k∈SD

QUDik(π)

−QU ii(π)
GkiP ij(π)

︸ ︷︷ ︸
Case 3

,

from which

−

(
QU ii(π) +

∑
k∈SD

QUDik(π)Gki

)
P ij(π) = QU ij(π) +

∑
k∈SD

QUDik(π)Gkj. (24)

As defined before let diagm〈〉 be the operator that creates a diagonal matrix from an input
matrix such that all non-diagonal elements of the original matrix are set to zero. Using this
notation we can write (24) in matrix form as

P (π) = (−diagm〈QU (π) +QUD(π)G〉)−1

· (QU (π) +QUD(π)G− diagm〈QU (π) +QUD(π)G〉)
= (−diagm〈Qc(π)〉)−1(Qc(π)− diagm〈Qc(π)〉)

(25)

where −diagm〈Qc(π)〉 in the second term of the right side ensures that the diagonal of
P (π) is equal to zero according to the definition of P ii(π) and we used that Qc(π) =
QU (π)+QUD(π)(−QD)−1QDU = QU (π)+QUD(π)G (which comes from the definition
of Qc(π) in (5) and the definition of G in (19)).

The formula for τi(π), which describes the expected time before entering SU \ i when
the process starts in i ∈ SU , has a similar structure:

Queueing Models and Service Management

9



τi(π) = E
[
ρSU\i|X(0) = i, ∃ρSU\i

]
=

∑
j∈SU\i

QU ij(π)

−QU ii(π)

1

−QU ii(π)
︸ ︷︷ ︸

Case 1

+

∑
j∈SU\i

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gkj

1

−QU ii(π)
+Akj

)

︸ ︷︷ ︸
Case 2

+

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gki

1

−QU ii(π)
+Aki +Gkiτi(π)

)

︸ ︷︷ ︸
Case 3

=
1

−QU ii(π)
+

∑
j∈SU

∑
k∈SD

QUDik(π)

−QU ii(π)
Akj +

∑
k∈SD

QUDik(π)

−QU ii(π)
Gkiτi(π), (26)

where we used that QD is transient, thus
∑

j∈SU
Gkj = 1, ∀k ∈ SD. The first term (Case

1) is the mean time until the first transition multiplied by the probability of Case 1. In

the second term (Case 2)
∑

j∈SU\i
∑

k∈SD

QUDik(π)

−QU ii(π)
Gkj

1

−QU ii(π)
is the time until the first

transition multiplied by the probability of Case 2 and summed for all j ∈ SU \ i, and∑
j∈SU\i

∑
k∈SD

QUDik(π)

−QU ii(π)
Akj is the remaining time until visiting state j multiplied by the

probability of Case 2 and summed for all j ∈ SU \ i. We note that in this part multiplication
by Gkj is not necessary, because Akj already contains the probability Gkj . The third term
contains analogous components to the second term, but for Case 3, when the process enters

SU in state i, we also have the added
∑

k∈SD

QUDik(π)

−QU ii(π)
Gkiτi(π), because if the process

returns to state i, an additional τi(π) time is needed to visit some state in SU \ i. We can
express τi(π) from (26) as

−

(
QU ii(π) +

∑
k∈SD

QUDik(π)Gki

)
τi(π) = 1 +

∑
j∈SU

∑
k∈SD

QUDik(π)Akj. (27)

Using G = (−QD)−1QDU from (18), the matrix form of (27) is

τ(π) = (−diagm〈QU (π) +QUD(π)G〉)−1(1 +QUD(π)A1), (28)

which is identical with (13), the corresponding equation of Theorem 1.
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Finally we have a very similar expression for the elements of the c(π) vector:

ci(π) = E[

∫ ρSU\i

t=0

CX(t)X(t) | X(0) = i] =
∑

j∈SU\i

QU ij(π)

−QU ii(π)

CU ii(π)

−QU ii(π)
︸ ︷︷ ︸

Case 1

+

∑
j∈SU\i

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gkj

CU ii(π)

−QU ii(π)
+M kj

)

︸ ︷︷ ︸
Case 2

+

∑
k∈SD

QUDik(π)

−QU ii(π)

(
Gki

CU ii(π)

−QU ii(π)
+M ki +Gkici(π)

)

︸ ︷︷ ︸
Case 3

=
CU ii(π)

−QU ii(π)
+

∑
j∈SU

∑
k∈SD

QUDik(π)

−QU ii(π)
M kj +

∑
k∈SD

QUDik(π)

−QU ii(π)
Gkici(π) (29)

This expression follows the same logic as (26), the only difference is that instead of times we
have rewards accumulated over those times, thus the 1

−QU ii

(π) terms in (26) are replaced

by CU ii(π)

−QU ii

(π), A is changed to M and τi(π) is changed to ci(π). We can express ci(π)

from (29) as

−

(
QU ii(π) +

∑
k∈SD

QUDik(π)Gki

)
ci(π) = CU ii(π) +

∑
j∈SU

∑
k∈SD

QUDik(π)M kj.

Using the same substitutions as in (12) and (13), the matrix form of this equation is identical
to (14), the final equation of Theorem 1.

5. Compression of Partitioned MDPs

In this section, we present the main contribution of the paper, the compressed repre-
sentation of partitioned MDPs. We discuss the idea behind the compression, and provide
analytical proof for the equivalence of the original and the compressed forms.

Theorem 2. Let (S,A,Q(π),C(π)) be an MDP with irreducible Q(π), where the gener-
ator and reward-rate matrices can be partitioned according to (2). The MDP defined by
(S′, A′,Q′(π),C′(π)) and the one defined by (S,A,Q(π),C(π)) have the same optimal
policy, where S ′ = SU , A′ = A,

Q′
ij(π) =

{
− 1

τi(π)
, if i = j,

P ij(π)

τi(π)
, otherwise,

and C′
ij(π) =

{
ci(π)
τi(π)

, if i = j,

0, otherwise.
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Remark. The core idea of the compression is the following. When the process exits a state
i ∈ SU , it can take multiple trajectories. It can either directly transition to another state in
SU \ {i}, or it can go through a number of transitions in SD ∪ {i} before transitioning to
a state in SU \ {i}. When the decision is made in state i, the distribution of the next state
reached in SU \ {i}, the distribution of the time until reaching this state, and the distribu-
tion of the accumulated reward until reaching this state can be calculated (and no further
knowledge of decisions in other states is needed). The theorem states that, to optimise the
long-term expected reward rate, we can change the distribution of the time needed to reach
SU \ {i} and the associated accumulated reward to exponentially distributed variables; as
long as their expected values match with the expected value of the original distributions, the
optimal policy will not change.

Proof. Let us denote by diagv〈v〉 the diagonal matrix created from the elements of vector v,
let S(π) = diagv〈τ(π)〉 and Z(π) = −diagm〈Qc(π)〉. Then, using the formula for P (π)
from (12) we can write

Q′(π) = diagv〈τ(π)〉−1(−I + P (π))

= S−1(π)(−I + (−diagm〈Qc(π)〉)−1(Qc(π)− diagm〈Qc(π)〉))
= S−1(π)Z−1(π)Qc(π).

(30)

and using the formula for c(π) from (14) we have

C′(π) = diagv〈τ(π)〉−1diagm〈c(π)〉
= S−1(π)(−diagm〈Qc(π)〉)−1(CU (π)1 +QUD(π)M1)
= S−1(π)Z−1(π)(CU (π)1 +QUD(π)(−QD)−1CD(−QD)−1QDU1)
= S−1(π)Z−1(π)(CU (π)1 +QUD(π)(−QD)−1CD1),

(31)

where we used that (−QD)−1QDU1 = 1 for stationary MDPs. The α′(π) stationary proba-
bility vector of the compressed MDP has to satisfy the

α′(π)Q′(π) = 0

α′(π)1 = 1

system of equations. The first equation can be transformed as

0 = α′(π)Q′(π) = α′(π)S−1(π)Z−1(π)Qc(π) = α′′(π)Qc(π), (32)

where α′′(π) = α′(π)S−1(π)Z−1(π). The second equation can be transformed as

1 = α′(π)1
= α′(π)S−1(π)Z−1(π)S(π)Z(π)1
= α′′(π)(−diagm〈Qc(π)〉)diagv〈τ(π)〉1
= α′′(π)(−diagm〈Qc(π)〉)(−diagm〈Qc〉(π))−1(1 +QUD(π)A1)
= α′′(π)(1 +QUD(π)A1).
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Using the formula for A from (18) and using that (−QD)−1QDU1 = 1 we can further
transform the expression as

1 = α′′(π)(1 +QUD(π)(−QD)−11). (33)

Thus, from (32) and (33) we obtain the

0 = α′′(π)Qc(π) , 1 = α′′(π)(1 +QUD(π)(−QD)−11)

system of linear equations for α′′(π) that completely determines α′′(π). However these are
the same as the linear equations for αU(π), (4) and (7), thus α′′(π) = αU(π).

The mean reward rate of the compressed MDP can be given using (31) as

α′(π)C′(π)1 = α′(π)S−1(π)Z−1(π)(CU (π)1 +QUD(π)(−QD)−1CD1)
= αU(π)(CU (π)1 +QUD(π)(−QD)−1CD1),

where we used that α′′(π) = αU(π) = α′(π)S−1(π)Z−1(π). This, however, is the same as
the mean reward rate for the original MDP, as can be seen from (8), thus the average reward
rate of the original and the compressed MDP is the same for any given policy, thus their
optimal policies are also the same.

6. Compression of Partitioned MDPs with Special Structures

In the previous section, we presented the general formulas of the proposed MDP com-
pression method. In this section, we discuss the application of the method in some special,
practically important cases. The general formulas for the compression method rely on the
calculation of the G,A, and M matrices. For MDPs with finite SD the calculation of these
matrices can be done based on (18), (19) and (23), which are based on the computation of
the inverse of QD. If the SD subset is infinite, however, the calculation of these matrices
is not trivial and it has to rely on the structural regularity of the MDP. We discuss two im-
portant cases where the calculation of the G,A, and M matrices are possible, which are
the cases when the structures of the MDP in SD are spatially homogeneous M/G/1-type and
G/M/1-type.

During the analysis of matrix G and A we are going to utilize some known results of
M/G/1-type and G/M/1-type processes, while the analysis presented for matrix M was not
discussed in the literature to the best of the authors’ knowledge.

6.1. The M/G/1 type process

An MDP is of M/G/1 type (with the considered {SU , SD} partitioning) if its generator
matrix has the following block structure

Q(π) =




L̄(π) F̄1(π) F̄2(π) . . .
B L F1 F2 . . .

B L F1 F2 . . .
. . . . . . . . . . . .


 . (34)
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The MDP can be partitioned to levels according to the blocks so that each row in (34)
corresponds to a separate level. In the following we assume that the reward rate matrix also
has some level based regularity, thus

C(π) =




C1(π)
C2

C3

. . .


 , (35)

where Cn = f(C0, n) for n = 2, 3, . . . ,. We discuss some specific cases in Section 7.2.
In the following we denote the ith state of the nth level by vn,i, where i ∈ Φ =

{1, 2, . . . , φ} and n ∈ {1, 2, . . .}. Using the level based partitioning the process cannot
descend more than one level during a single state transition (i.e., a transition cannot happen
from level n to level n − k, k ≥ 2), and any downward transition between neighbouring
levels is described by the B matrix. We define the levels such that level 1 is identical with
SU and the rest of the levels are in SD, thus the SU , SD based decomposition of the Q(π)
and C(π) is

QU (π) = L̄(π), QUD(π) =
(
F̄1(π) F̄2(π) . . .

)
,

QDU =



B
0
...


 , QD =



L F1 F2 . . .
B L F1 F2 . . .

. . . . . . . . . . . .


 ,

CU (π) = C1(π), CD =



C2

C3

. . .


 .

To compute the G, A, and M matrices for the infinite SD we define the Ĝ, Â, and M̂n

matrices that are similar, however, instead of trajectories from SD to SU they describe tra-
jectories from level n to level n − 1 inside SD. Matrix Ĝ is known to be the characteristic
matrix of the M/G/1-type process (see Neuts [15]) and is well discussed in the literature,
unlike the analysis of matrix M̂n.

Theorem 3. For an MDP with M/G/1-type structure in SD according to (34) and (35) the
parameters of the reduced MDP representation are

P (π) = (−diagm〈Qc(π)〉)−1 (Qc(π)− diagm〈Qc(π)〉) , (36)

τ(π) = (−diagm〈Qc(π)〉)−1

(
1 +

∞∑
i=1

F̄i(π)
i∑

�=0

Ĝ
�
ÂĜ

i−�
1

)
, (37)

c(π) = (−diagm〈Qc(π)〉)−1

(
C1(π)1 +

∞∑
i=1

F̄i(π)
i∑

�=0

Ĝ
�
M̂i+1−�Ĝ

i−�
1

)
, (38)
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where Qc(π) = L̄(π) +
∑∞

i=1 F̄i(π)Ĝ
i
, Ĝ is the minimal non-negative solution of

0 = B +LĜ+
∞∑

m=1

FmĜ
m+1

, (39)

Â is the solution of the linear matrix equation

Ĝ = LÂ+
∞∑

m=1

Fm

m∑
�=0

Ĝ
�
ÂĜ

m−�
, (40)

and M̂n is the solution of

CnĜ = LM̂n +
∞∑

m=1

Fm

m∑
�=0

Ĝ
�
M̂n+m−�Ĝ

m−�
. (41)

Remark. Efficient numerical methods are available for the solution of (39) e.g., in Bini [4].
The solution of (40) can be achieved e.g., with the use of the column stacking vec operator,
for which vec(ABC) = (CT ⊗A)vec(B). Applying vec for (40) gives

vec(Ĝ) = (I ⊗L) vec(Â) +
∞∑

m=1

m∑
�=0

(
Ĝ

m−�T ⊗ FmĜ
�
)
vec(Â),

from which

vec(Â) =

(
(I ⊗L) +

∞∑
m=1

m∑
�=0

(
Ĝ

m−�T ⊗ FmĜ
�
))−1

vec(Ĝ).

The solution of (41) is more difficult in general. It is discussed in Section 7.2 for some
special Cn (and Fn) series.

We also note that the expressions in the theorem can be further simplified based on the
fact that the characteristic matrix of a positive recurrent M/G/1 type process is a stochastic
matrix, that is Ĝ1 = 1. When applying this simplification it is enough to compute vectors
Â1 and M̂i1 instead of matrices Â and M̂i.

Proof. Similar to the proof of Theorem 1 we apply a unified approach for the analysis of
all required measures. For the analysis of the level process in SD, we define Ĝij(t) =
Pr(X(ρn−1) = vn−1,j, ρn−1 < t|X(0) = vn,i), where ρn−1 is the time of the first visit to
level n − 1, i.e., Ĝij(t) is the probability that the process, starting from state i of level n
reaches level n− 1 before time t and the first visit is to state j on this level. We also define
the multi level version of this measure, Ĝmij , that describe trajectories from level n to level
n−m,

Ĝmij(t) = Pr(X(ρn−m) = vn−m,j, ρn−m < t|X(0) = vn,i).
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Furthermore, ĝ(t) = d
dt
Ĝ(t) and ĝm(t) = d

dt
Ĝm(t). By definition, we have ĝ1(t) = ĝ(t)

and by the fact that the first visit from level n to level n − m can be decomposed into the
first visit from level n to level n− 1 and then the first visit from level n− 1 to level n−m
we also have ĝm(t) = (ĝ ∗ ĝm−1)(t), ∀m ≥ 2, where ∗ is the convolution operator, i.e.,
(a ∗ b)(t) =

∫ t

τ=0
a(τ)b(t− τ)dτ . Similar to gij(t), we can express ĝij(t) based on the first

transition from state vn,i as

ĝij(t) = −Liie
Liit

Bij

−Lii

+

∫ t

τ=0

−Liie
Liiτ

(∑
k∈Φ,
k �=i

Lik

−Lii

ĝkj(t− τ) +
∞∑

m=1

∑
k∈Φ,
k �=i

Fmik

−Lii

ĝm+1kj(t− τ)

)
dτ. (42)

The Laplace transform of (42) gives

ĝ∗
ij(s) =

−Lii

s−Lii

(
Bij

−Lii

+
∑
k∈Φ,
k �=i

Lik

−Lii

ĝ∗
kj(s) +

∞∑
m=1

∑
k∈Φ

Fmik

−Lii

ĝ∗
m+1kj

(s)

)
.

Multiplying both sides by s−Lii and adding Liiĝ
∗
ii(s) we obtain

sĝ∗
ij(s) = Bij +

∑
k∈Φ

Lik

−Lii

ĝ∗
kj(s) +

∞∑
m=1

∑
k∈Φ

Fmik

−Lii

ĝ∗
m+1kj

(s),

which can be written in matrix form, using ĝ∗
m(s) = ĝ∗(s)m, as

sĝ∗(s) = B +Lĝ∗(s) +
∞∑

m=1

Fmĝ∗(s)m+1. (43)

Similar to the case of g∗(s), using the final value theorem we have that

Ĝij
def
= Pr(X(ρn−1) = vn−1,j|X(0) = vn,i)

= lim
t→∞

G(t) =

∫ ∞

t=0

ĝij(t)dt = lim
s→0

ĝ∗
ij(s),

i.e., Ĝij is the probability that the process, starting from state i of level n reaches level n−1
(n > 2) in state j. Substituting s = 0 into (43) we get

0 = B +LĜ+
∞∑

m=1

FmĜ
m+1

, (44)

Which is the well-known matrix equation for computing the characteristic matrix of an
M/G/1 type process (see Neuts [15]). Similar to matrix A we define

Âij
def
= E[ρn−1I{X(ρn−1)=j}|X(0) = i] = − d

ds
ĝ∗

ij(s)
∣∣
s=0

,

C  Mészáros, Telek

16



which we obtain from the moment generating property of the Laplace transform.
Taking the derivative of (43) according to s in s = 0 we get

Ĝ = LÂ+
∞∑

m=1

Fm

m∑
�=0

Ĝ
�
ÂĜ

m−�
, (45)

which is the linear equation for computing Â based on Ĝ.
To obtain the matrix of mean accumulated rewards till the first visit to level n − m,

starting from level n, similar to K(r) we define K̂n,m(r) by its i, j element as

K̂n,mij(r) = Pr

(
X(ρn−m) = vn−m,j,

∫ ρn−m

t=0

CX(t),X(t)dt < r|X(0) = vn,i

)
, (46)

that is, K̂n,mij(r) is the probability that the process starting from state i of level n will
visit level n − m before reward r is accumulated and the first visit to level n − m will be
in state j. We also define k̂n,mij(r) = d

dr
K̂n,mij(r). Element k̂n,1ij(r) can be expressed

very similar to kij(r) in (21). Using notation k̂n(r) = k̂n,1(r) and k̂n,m(r) = (k̂n,n−1 ∗
k̂n−1,m−1)(r), ∀n ≥ m+ 1,m ≥ 1 we can write

k̂n,1ij(r) =
−Lii

Cnii

e
Lii

Cnii

r Bij

−Lii

+

∫ r

u=0

−Lii

Cnii

e
Lii

Cnii

u
(∑

k∈Φ,
k �=i

Lik

−Lii

k̂n,1kj(r − u)

+
∑
k∈Φ

∞∑
m=1

Fmik

−Lii

k̂n+m,m+1kj(r − u)

)
du.

Taking the Laplace transform of the above equation and rearranging the result in a similar
manner as before, we obtain

sCnk̂
∗
n(s) = B +Lk̂∗

n(s) +
∞∑

m=1

Fmk̂∗
n+m,m+1(s), (47)

where

k̂∗
n+m,m+1(s) =

n∏
k=n+m

k̂∗
k(s) = k̂∗

n+m(s)k̂∗
n+m−1(s) . . . k̂

∗
n+1(s)k̂

∗
n(s).

Similar to lim
s→0

k∗(s) = G, we have lim
s→0

k̂∗
n(s) =

∫∞
r=0

k̂n(r)dr = Pr(X(ρn−1) =

vn−1,j|X(0) = vn,i) = Ĝ. As a consequence, lim
s→0

k̂∗
n(s) is level independent even though

k̂∗
n(s) is level dependent.

Using the moment generating property of the Laplace transform we define

M̂nij
def
= − d

ds
k̂∗
nij

(s)
∣∣
s=0

= E

[
I{X(ρn−1)=vn−1,j}

∫ ρn−1

t=0

CX(t),X(t)dt
∣∣∣X(0) = vn,i

]
.
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The derivative of (47) at s = 0 gives

CnĜ = LM̂n +
∞∑

m=1

Fm

m∑
�=0

Ĝ
�
M̂n+m−�Ĝ

m−�
, (48)

where we used that Ĝ = lim
s→0

k̂∗
n(s) and M̂n = − d

ds
k̂∗
n(s)

∣∣
s=0

. This equation has to be

solved to obtain the required M̂n matrices for n = 1, 2 . . ..
The level dependence of Cn makes M̂n level dependent as well, while Â is level in-

dependent. To separate the level dependent and level independent elements of M̂n, for
i, j, � ∈ Φ, n ≥ 1, m ≥ 0 we introduce

T̂mij�
def
= E

[
I{X(ρn−1)=vn−1,j}

∫ ρn−1

t=0

I{X(t)=vn+m,�}dt
∣∣∣X(0) = vn,i

]
. (49)

Due to the spatial homogeneity of the M/G/1 type process T̂mij� is level independent, that
is, it does not depend on n. Based on T̂mij�, Â and M̂n can be obtained as

Âij =
∞∑

m=0

∑
�∈Φ

T̂mij� and M̂nij =
∞∑

m=0

∑
�∈Φ

T̂mij�Cn+m��. (50)

The next task is to compute the global SD related measures G,A, and M from the level
related measures Ĝ, Â, and M̂n. For states i′ = vm+1,i and j′ = v1,j , we have that

g∗(s)i′j′ = ĝ∗
m(s)ij = [ĝ∗(s)m]ij ,

and

k∗(s)i′j′ = k̂∗
m+1,m(s)ij =

[
2∏

k=m+1

k̂∗
k(s)

]

ij

.

Using these relations of the transform we obtain

Gij = lim
s→0

g∗(s)i′j′ = lim
s→0

[ĝ∗(s)m]ij = [Ĝ
m
]ij,

Aij =
d

ds
g∗(s)i′j′

∣∣
s=0

=
d

ds
ĝ∗
m(s)ij

∣∣
s=0

=

[
d

ds
ĝ∗(s)m

∣∣
s=0

]

ij

=

[
m−1∑
�=0

ĝ∗(s)�
d

ds
ĝ∗(s)ĝ∗(s)m−1−�

∣∣
s=0

]

ij

=

[
m−1∑
�=0

Ĝ
�
ÂĜ

m−1−�

]

ij

,

and

M i′j′ =
d

ds
k∗(s)i′j′

∣∣
s=0

=

[
m−1∑
�=0

Ĝ
�
M̂m+1−�Ĝ

m−1−�

]

ij

,

where the derivation of M ij follows the same patterns as the one of Aij and we used that
lim
s→0

k̂∗
k(s) = Ĝ is independent of level k.

Substituting G, A and M into (12), (13) and (14), for the compressed process we obtain
(36), (37), and (38).
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6.2. The G/M/1 type process

An MDP is of G/M/1 type with the considered {SU , SD} partitioning if its generator
matrix has the following block structure

Q(π) =




L̄(π) F̄ (π)
B̄1 L F
B̄2 B1 L F

... . . . . . . . . . . . .


 . (51)

The MDP can be partitioned to levels according to blocks so that each matrix block row in
(51) corresponds to a level. In the following we assume that the reward rate matrix also has
some level based regularity, thus

C(π) =




C1(π)
C2

C3

. . .


 , (52)

where Cn = f(C0, n), ∀n ≥ 2. We discuss some specific cases later in Section 7.1.

Theorem 4. For an MDP with G/M/1 type structure in SD, according to (51) and (52) the
parameters of the reduced MDP representation are

P (π) = (−diagm〈Qc(π)〉)−1 (Qc(π)− diagm〈Qc(π)〉) , (53)

τ(π) = (−diagm〈Qc(π)〉)−1

(
I +

∞∑
m=1

R̂1(π)R
m−1

)
1, (54)

c(π) = (−diagm〈Qc(π)〉)−1

(
C1(π) +

∞∑
m=1

R̂1(π)R
m−1Cm+1

)
1, (55)

where Qc(π) = L̄(π) +
∑∞

m=1 R̂1(π)R
m−1B̄m,

R̂1(π) = F̄ (π)

(
−L−

∞∑
m=1

RmBm

)−1

and R is the solution of

0 = F +RL+
∞∑

m=1

Rm+1Bm.

Remark. Matrix R is the well studied characteristic matrix of the G/M/1 type process
(see Latouche and Ramaswami [13]). Efficient numerical methods are available for its
computation e.g., in Bini [4]. Unlike (38), the Cn matrices appear in (55) directly, which
makes the computation of the reward term much simpler for the G/M/1 type process, because
in this case there is no need to compute M̂n from (41).
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Proof. Let ηn be the time of the first visit to a level equal to or lower than n, that is, ηn =
mink∈{0,1,...,n}(ρk), furthermore we define the V (t) matrix function whose ij element is

V ij(t) = Pr(X(t) = vn,j, ηn−1 > t|X(0) = vn,i), ∀n > 1.

That is, V ij(t) is the probability that the process, assuming that it starts in state i of level
n, visits state j of level n at time t such that it does not visit any lower level before t.
Furthermore, we define R(t) = FV (t). A stochastic interpretation of its i, j element is

Rij(t) = lim
∆→0

1

∆
Pr(X(t) = vn+1,j, ηn > t,X(∆) �= vn,i|X(0) = vn,i).

We define the multi level version of R(t) as

Rmij(t) = lim
∆→0

1

∆
Pr(X(t) = vn+m,j, ηn > t,X(∆) �= vn,i|X(0) = vn,i).

Starting from level n and being at level n +m at time t, let τ be the last instance when the
process is at level n+ 1 before time t. Then

Rmij(t) =
∑
k

∫ t

τ=0

Rik(τ)Rm−1kj(t− τ)dτ

That is, for m > 1, Rm(t) = R(t) ∗ Rm−1(t), with R1(t) = R(t) and ∗ denoting the
convolution operator.

To evaluate Rm(t) we first compute V (t). We express V ij(t) using the law of total
probability as the event X(t) = vn,j|X(0) = vn,i can partitioned the following way:

a) The first transition happens after time t and i = j. The probability of this is
δij

∫∞
h=t

−Liie
Liihdh = δije

Liit.

b) The first transition happens before time t and this transition is inside level n. The
probability of this is

∫ t

h=0
−Liie

Liih
∑

k∈Φ
k �=i

Lik

−Lii
V kj(t− h)dh.

c) The first transition happens before time t and this transition is to level n+ 1.

We can break down c) further according to the last level visited by the process before
returning to level n for the first time. The probability that this level is n+m (where m > 0,
and, to avoid special treatment of m = 1, assuming (V ∗R0)(t) = V (t)) is

∫ t

h=0

−Liie
Liih

∑
k∈Φ

F ik

−Lii

[
(V ∗Rm−1Bm ∗ V )(t− h)

]
kj
dh

=

∫ t

h=0

eLiih
[
(RmBm ∗ V )(t− h)

]
ij
dh.

C  Mészáros, Telek

20



Combining a), b), and c) we have

V ij(t) = δije
Liit

︸ ︷︷ ︸
a)

+

∫ t

h=0

eLiih
∑
k∈Φ
k �=i

LikV kj(t− h)dh

︸ ︷︷ ︸
b)

+

∫ t

h=0

eLiih

∞∑
m=1

[(RmBm ∗ V )(t− h)]ij dh

︸ ︷︷ ︸
c)

Laplace transforming the above equation and multiplying by s−Lii we get

(s−Lii)V
∗
ij(s) = δij +

∑
k∈Φ
k �=i

LikV
∗
kj(s) +

[
R*

m(s)BmV ∗(s)
]
ij
.

After adding LiiV
∗
ii(s) to both sides we can write the equation in matrix form as

sV ∗(s) = I +LV ∗(s) +
∞∑

m=1

R*
m(s)BmV ∗(s),

from which

V ∗(s) =

(
sI −L−

∞∑
m=1

R∗(s)mBm

)−1

, (56)

using R*
m(s) = R∗(s)m . Multiplying it with F from the left side we get

FV ∗(s) = R∗(s) = F

(
sI −L−

∞∑
m=1

R∗(s)mBm

)−1

.

By multiplying with the term in the parentheses from the left and rearranging the equation
we obtain

sR∗(s) = F +R∗(s)L+
∞∑

m=1

R∗(s)m+1Bm.

At s → 0 this becomes

0 = F +RL+
∞∑

m=1

Rm+1Bm, (57)

where R =
∫∞
τ=0

R(τ)dτ = lim
s→0

R(s). Equation (57) is the well-known matrix equation
to obtain matrix R, the characteristic matrix of the G/M/1 type process (see Latouche and
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Ramaswami [13]). If the process starts in the irregular first level, then the same methodology
can be applied, but

V̂ ij(π, t) = δij

∫ ∞

h=t

−L̄ii(π)e
L̄ii(π)hdh

+

∫ t

h=0

−L̄ii(π)e
L̄ii(π)h

∑
k∈Φ
k �=i

L̄ik(π)

−L̄ii(π)
V̂ kjπ, t− h)dh

+

∫ t

h=0

eL̄ii(π)h

∞∑
m=1

[
(R̂m(π)B̄m ∗ V̂ (π))(t− h)

]
ij
,

where R̂(π, t) = F̄ (π)V (t), R̂m(π, t) = (R̂(π) ∗ Rm−1)(t), ∀m > 1. Using the same
steps as before we obtain

sR̂
∗
(π, s) = F̄ (π) + R̂

∗
(π, s)L̄+

∞∑
m=1

R̂m+1
∗
(π, s)Bm. (58)

where R̂m+1
∗
(π, s) = R̂

∗
(π, s)R∗

m(s) = R̂
∗
(π, s)R∗(s)m, from which at s → 0 (58)

becomes

0 = F̄ (π) + R̂(π)L+
∞∑

m=1

R̂(π)RmBm, (59)

where R̂(π) = lim
s→0

R̂*(π, s) and R̂m(π) = lim
s→0

R̂m
∗
(π, s). By rearranging (59) we get that

R̂(π) = F̄ (π)

(
−L−

∞∑
m=1

RmBm

)−1

, R̂m+1(π) = R̂(π)Rm. (60)

For G/M/1 type processes we cannot adopt the approach used for the M/G/1 type pro-
cess. In this case, we directly express the P (π), τ(π), and c(π) parameters.

From the definition of Rm, 1

−Lii
Rmij is the mean time spent in vn+m,j until the process

visits some level below n, starting from vn,i. For P (π) we use the same decomposition as
for the general case in Section 4, where we had the following cases:

• Case 1: the process moves to state j (j ∈ SU \ i) directly.

• Case 2: the process first moves to k ∈ SD, spends some time in SD, then enters SU in
state j.

• Case 3: the process first moves to k ∈ SD, spends some time in SD, then enters SU in
state i. This case adds a recursive term to the formulas.
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Using this decomposition we can write, for i �= j:

P ij(π) =
L̄ij(π)

−L̄ii(π)︸ ︷︷ ︸
Case 1

+
∞∑

m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)B̄mkj

︸ ︷︷ ︸
Case 2

+
∞∑

m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)B̄mkiP ij(π)

︸ ︷︷ ︸
Case 3

,

and P ii(π) = 0. That is, for i �= j

−

(
L̄ii(π) +

∞∑
m=1

[R̂m(π)B̄m]ii

)
P ij(π) = L̄ij(π) +

∞∑
m=1

[R̂m(π)B̄m]ij,

which can be written in matrix from as

P (π) = (−diagm〈Qc(π)〉)−1 (Qc(π)− diagm〈Qc(π)〉) ,

where Qc(π) = L̄(π) +
∑∞

m=1 R̂m(π)B̄m. The subtraction of the diagonal matrix in the
second term ensures that the diagonal of P (π) is zero. Using R̂m(π) = R̂1(π)R

m−1, we
can also write Qc(π) = L̄(π) +

∑∞
m=1 R̂1(π)R

m−1B̄m.
To compute τ(π), let γSU\i be the first time to reach SU \ i, furthermore let τi(π, t) =

Pr(γSU\i > t|X(0) = i) and τ ∗i (π, s) =
∫
t
τi(π, t)e

−stdt. For τ ∗i (π, s) we have

τ ∗i (π, s) =
1

s− L̄ii(π)︸ ︷︷ ︸
no transition till t

+
∞∑

m=1

∑
k∈Φ

∑
�∈Φ

−L̄ii(π)

s− L̄ii(π)︸ ︷︷ ︸
transition at x(< t)

F̄ ik(π)

−L̄ii(π)

(
V ∗(s)R*

m−1(s)
)
k�︸ ︷︷ ︸

time in SD > t− x

+
∞∑

m=1

∑
k∈Φ

−L̄ii(π)

s− L̄ii(π)︸ ︷︷ ︸
tr. at x

F̄ ik(π)

−L̄ii(π)

(
V ∗(s)R*

m−1(s)B̄m

)
ki︸ ︷︷ ︸

return to i at y (x < y < t)

τ ∗i (π, s)︸ ︷︷ ︸
time to SU \i > t− y

.
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Multiplying with s− L̄ii(π) gives

(s− L̄ii(π))τ
∗
i (π, s) = 1 +

∞∑
m=1

∑
k∈Φ

∑
�∈Φ

F̄ ik(π)
(
V *(s)R*

m−1(s)
)
k�

+
∞∑

m=1

∑
k∈Φ

F̄ ik(π)
(
V *(s)R*

m−1(s)B̄m

)
ki
τ ∗i (π, s) =

1 +
∞∑

m=1

∑
�∈Φ

R̂*
m(π, s)i� +

∞∑
m=1

(
R̂*

m(π, s)B̄m

)
ii
τ ∗i (π, s).

We are interested in the mean time to get to SU \ i which is
∫
t
τi(π, t)dt = τ ∗i (π, s)|s=0 �

τi(π). Substituting s = 0 we have

− L̄ii(π)τi(π) = 1 +
∞∑

m=1

∑
�∈Φ

R̂m(π)i� +
∞∑

m=1

(
R̂m(π)B̄m

)
ii
τi(π),

where we used that R̂m(π) = R̂*
m(π, s)|s=0. From this

−

(
L̄ii(π) +

∞∑
m=1

[R̂m(π)B̄m]ii

)
τi(π) = 1 +

∞∑
m=1

∑
�∈Φ

R̂mi�(π).

Using R̂m(π) = R̂1(π)R
m−1 its matrix form is (54).

Based on a similar argument, for ci(π) we have

ci(π) =
C1ii

−L̄ii(π)
+

∞∑
m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)Cm+1kk

+
∞∑

m=1

∑
k∈Φ

1

−L̄ii(π)
R̂mik(π)B̄mkici(π),

from which

−

(
L̄ii(π) +

∞∑
m=1

[R̂m(π)B̄m]ii

)
ci(π) = C1ii(π) +

∞∑
m=1

∑
k∈Φ

R̂mik(π)Cm+1kk,

whose matrix form is (55)

7. Calculation of c(π) with Different Reward Structures

In this section, we provide methods to calculate c(π) when the infinite reward matrix
C(π) follows different regular structures. Specifically, we consider the following cases:
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• geometric series: Cn = κnC0, ∀n > 1,

• matrix geometric series: Cn = C0
n, ∀n > 1,

• polynomial series: Cn = p(n)C0, ∀n > 1,

where C0 is arbitrary diagonal matrix, κ is a positive real number and p(n) is a finite order
arbitrary non-negative polynomial of n.

7.1. Calculating the c(π) reward function for G/M/1 type processes

For G/M/1 type processes, (55) defines the relation of c(π) with C1(π) and Cm

(m ≥ 2). The only non-trivial part of this formula is the computation of the infinite sum∑∞
m=1 R

m−1Cm+1.

7.1.1. Reward function for Cn = κnC0

If Cn = κnC0, then the infinite sum converges when κλR < 1, where λR is the spectral
radius of R. In this case,

∞∑
m=1

Rm−1Cm+1 =
∞∑

m=1

Rm−1κm+1C0 = κ2(I − κR)−1C0.

7.1.2. Reward function for Cn = C0
n

If Cn = C0
n, then

∑∞
m=1 R

m−1C0
m−1C0

2 = XC0
2, where X =∑∞

m=1 R
m−1C0

m−1 is the solution of the Sylvester equation X = I +RXC0.

7.1.3. Reward function for Cn = p(n)C0

If Cn = p(n)C0, without loss of generality, we assume p(n) =
∑k

i=0 ai(n−2)i. In this
case,

∞∑
m=1

Rm−1Cm+1 =
∞∑

m=1

Rm−1
k∑

i=0

ai(m− 1)iC0

= a0(I −R)−1C0 +
k∑

i=1

ai

∞∑
m=2

Rm−1

(m− 1)−i
C0

= a0(I −R)−1C0 +
k∑

i=1

aiLi−i(R)C0,

where Li �(Y ) is the polylogarithm function generalised for matrices, i.e.,

Li �(R) =
∞∑

m=1

Rm

m�
. (61)
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If � ∈ Z+ and the spectral radius of R is less than one (which holds if the generator of the
MDP is positive recurrent) Li−�(R) is finite and can be computed as

Li−k(R) = (−1)k+1

k−1∑
i=0

i!S(k + 1, i+ 1)(R− I)i+1,

(see e.g. Wood [18]), where S(k, i) = 1
k!

∑k
j=0(−1)k−j

(
k
j

)
jn denotes the Stirling number

of second kind.

7.2. Calculating the c(π) reward function for M/G/1 type processes

For M/G/1 type processes, (41) needs to be solved for M̂n, which is hard in general.
To simplify the discussion, in this section, we utilize the fact that the M/G/1 type processes
is positive recurrent and consequently Ĝ1 = 1. Multiplying both sides of (41) with 1 and
using Ĝ1 = 1 we have

Cn1 = Lµn +
∞∑

m=1

Fm

m∑
�=0

Ĝ
�
µn+m−�,

= Lµn +
∞∑

m=1

Fmµn+m +
∞∑
�=1

∞∑
m=�

FmĜ
�
µn+m−�, (62)

where µn = M̂n1, ∀n > 0, which is sufficient to compute c(π) according to (38).

7.2.1. Reward function for Cn = κnC0

If Cn = κnC0, then from (50) we have the following relation for n > 0

M̂nij =
∞∑

m=0

∑
�∈Φ

T̂mij�Cn+m�� =
∞∑

m=0

∑
�∈Φ

T̂mij�κ
nCm�� = κnM̂0ij,

and consequently, µn = κnµ0. Substituting this into (62), µ0 can be computed from

C01 =

(
L+

∞∑
m=1

κmFm +
∞∑
�=1

∞∑
m=�

κm−�FmĜ
�

)
µ0, (63)

where the existence and the singularity of the matrix in bracket depends on L, Fm and Ĝ.

7.2.2. Reward function for Cn = C0
n

This case does not provide a simple relation for the µn series, which makes the so-
lution of (41) possible in general. A practically important case, when Fm = Fm, allows
analytically compact description and is discussed below.
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7.2.3. Reward function for Cn = p(n)C0

For Cn = p(n)C0 =
∑k

u=0 aun
uC0 we utilize the linear structure of (62) and separate

the solution into the following sub-problems

Cn,u1 = Lµn,u +
∞∑

m=1

Fmµn+m,u +
∞∑
�=1

∞∑
m=�

FmĜ
�
µn+m−�,u, (64)

where Cn,u = nuC0, for u = {0, 1, . . . , k}. From the solutions for the sub-problems, µn,u,
the solution for Cn =

∑k
i=0 auCn,u is obtained as

µn =
k∑

u=0

auµn,u.

For M̂n,0 we have

M̂n,0ij =
∞∑

m=0

∑
�∈Φ

T̂mij�Cn+m,0��

=
∞∑

m=0

∑
�∈Φ

T̂mij�(n+m)0C0�� =
∞∑

m=0

∑
�∈Φ

T̂mij�C0��
def
= M̂ ,

from which µn,0 = M̂1 def
= µ is independent of n and can be computed from

C01 =

(
L+

∞∑
m=1

Fm +
∞∑
�=1

∞∑
m=�

FmĜ
�

)
µ. (65)

For u > 0 we have

M̂n+v,uij =
∞∑

m=0

∑
�∈Φ

T̂mij�Cn+v+m,u�� =
∞∑

m=0

∑
�∈Φ

T̂mij�(n+ v +m)uC0��

=
∞∑

m=0

∑
�∈Φ

T̂mij�

u∑
r=0

(
u

r

)
nu−r(v +m)rC0��

=
u∑

r=0

(
u

r

)
nu−r

∞∑
m=0

∑
�∈Φ

T̂mij�Cv+m,r�� =
u∑

r=0

(
u

r

)
nu−rM̂v,rij,

that is µn+v,u =
∑u

r=0

(
u
r

)
nu−rµv,r.

For v = 1 this gives, µn+1,u =
∑u

r=0

(
u
r

)
nu−rµ1,r. Substituting it into (64) for n = 1

and u > 0 gives an equation in which the unknowns are µ1,r for r = 0, 1, . . . , u. E.g., for
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n = 1, u = 1 we have

C01 −

(
∞∑

m=1

mFm +
∞∑
�=1

∞∑
m=�

(m− �)FmĜ
�

)
µ1,0 =

(
L+

∞∑
m=1

Fm +
∞∑
�=1

∞∑
m=�

FmĜ
�

)
µ1,1,

from which µ1,1 can be computed, since µ1,0 = µ is known from (65). Recursively, apply-
ing the same procedure for u = 1, 2, . . . , k provides the required µ1,u matrices, from which
all µn,u matrices (n ≥ 1, u ≥ 0) can be calculated using µn,u =

∑u
r=0

(
u
r

)
(n− 1)u−rµ1,r.

7.2.4. Special case of matrix geometric Fm series

When Fm = Fm, the infinite summations of the previous subsections containing Fm

become much simpler. E.g., in (63)
∞∑
�=1

∞∑
m=�

κm−�FmĜ
�
=

∞∑
�=1

∞∑
m=�

κm−�Fm−�F �Ĝ
�
= (I − κF )−1

∞∑
�=1

F �Ĝ
�

︸ ︷︷ ︸
X−I

= (I − κF )−1 (X − I),

where X is the solution of the Sylvester equation X = I + FXĜ.
In addition to this analytical simplicity, Fm = Fm makes it possible to compute the

solution for the matrix geometric reward function.

Theorem 5. If Cn = C0
n and Fm = Fm then the solution of (62) is µn = HC0

n1, where
H is the solution of the Sylvester equation

H = (L− I +X)−1 (I − FC0) + (L− I +X)−1F (L− I) H C0 (66)

and X is the solution of the Sylvester equation X = I + FXĜ.

Proof. If Cn = C0
n and Fm = Fm then (62) takes the form

C0
n1 = Lµn +

∞∑
m=1

m∑
�=0

FmĜ
�
µn+m−�

= (L− I)µn +
∞∑

m=0

m∑
�=0

FmĜ
�
µn+m−�

= (L− I)µn +
∞∑
k=0

∞∑
m=k

FmĜ
m−k

µn+k

= (L− I)µn +
∞∑
k=0

F kXµn+k,
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which suggests a matrix geometric solution, µn = W nµ. Substituting this solution, for
n > 0 we get

C0
n1 = (L− I)µn +

∞∑
k=0

F kXW n+kµ =

(
L− I +

∞∑
k=0

F kXW k

)
W nµ,

Since C0 is a diagonal matrix the spectral decomposition of W should be W = HC0H
−1,

where the unknowns (matrix H and vector µ) are defined by H−1µ = 1 and

I =

(
L− I +

∞∑
k=0

F kXHC0
kH−1

)
H , (67)

since

C0
n1 =

(
L− I +

∞∑
k=0

F kXHC0
kH−1

)
H

︸ ︷︷ ︸
I

C0
n H−1µ︸ ︷︷ ︸

1

.

Let Z =
∑∞

k=0 F
kXHC0

k. On the one hand Z is the solution of the Sylvester equation
Z = XH + FZC0. On the other hand, from (67), we have

I − (L− I)H = Z,

which gives the following linear equation for H

I − (L− I)H = XH + F (I − (L− I)H)C0,

whose standard Sylvester form is (66), and from µ = H1 and µn = W nµ we have µn =
H0

n1 which was to be proven.

8. Conclusions

We presented a methodology for computing a reduced representation of MDPs when
there is a finite subset of states with decisions and a potentially infinite subset of decision
independent states. This methodology requires the computation of some state dependent
reward measures, which we preformed for two practically important cases when the infinite
subset of decision independent states has M/G/1-type and G/M/1-type structure. The special
case, when the decision independent part has a QBD structure, can be computed by either
of the two general cases. Some required measures are already provided in the literature
of M/G/1-type and G/M/1-type processes, but the reward related measures, e.g., the ones
discussed in the previous section have not been considered before.
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