
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Introduction 
    Recently, Content Delivery Networks (CDNs), which distribute content (e.g., video 
and audio files, webpages) using a network of server clusters situated at multiple 
geographically distributed locations, have been extensively deployed in the Internet by 
content providers themselves (e.g., Google) as well as by third-party CDNs that distribute 
content on behalf of multiple content providers (e.g., Akamai’s CDN distributes Netflix and 
Hulu content) (see Kurose and Ross [17], Leighton [21]). The delay incurred in 
downloading content to an end user is often significantly lower when a CDN is used 
compared to the case where all content is downloaded from a single centralized host, since 
the server clusters of a CDN are located close to end users [17], [21]. 

In this paper, we consider a server cluster which contains 2M   servers and is part 
of a CDN. The server cluster stores N  large file types (e.g., videos). There is a high 
demand for each file type and therefore each file type is replicated across multiple servers 
within the cluster. Each file type is characterized by the average size of the file it stores. We 
do not maintain the identity of each individual file for every file type, but instead assume 
that the size of each file from any particular file type comes from a distribution. From now 
on, we refer to the file types as files for sake of brevity. Requests for the N  files from end 
users or from smaller server clusters arrive at the server cluster from time to time. There are 
two approaches to serving the file requests (refer to Shah [29] and Shah and de Veciana 
[31]).   

1. Single Server Allocation: Each file request is served by a single server [29, 31]. 
      2. Resource Pooling: Each file request is simultaneously served by multiple 
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servers, in particular, different chunks of the file are served by different servers in 
parallel [29, 31]. 

Resource pooling has been found to outperform single server allocation in prior studies 
(see Shah and de Veciana [29, 30, 31]). Hence in this paper, we assume that resource pooling 
is used. Also, we allow multiple files to be simultaneously downloaded from a given server. 
At any time instant, the sum of the rates at which a server j transmits different files is 
constrained to be at most j . Requests for different files are stored in different queues, and 
there is a cost for storing a request in a queue. Let ( )ij t be the rate at which server j
transmits file i at time t . We consider the problem of determining the rates ( )ij t for each 
i , j and t so as to minimize the expected time-averaged storage cost. We formulate this 
problem as a Markov Decision Process (MDP) (see Guo and Hérnandez-Lerma [14]). We 
show that this problem is Whittle-like indexable (see Whittle [36]) and use this result to 
propose a Whittle-like scheme [36] that can be implemented in a distributed manner1. We 
evaluate the performance of our scheme using simulations and show that it outperforms 
several natural heuristics for the problem such as Balanced Fair Allocation, Uniform 
Allocation, Weighted Allocation, Random Allocation and Max-Weight Allocation. 

We now review related prior literature. In Shah and de Veciana [30], performance of 
Content Delivery Networks is evaluated in a static framework. This work also studies the 
tradeoffs between delay for each packet vs the energy used etc. The polymatroid structure 
of the service capacity in this model is exploited to get an expression for mean file transfer 
delay that is experienced by incoming file requests. Performance of dynamic server 
allocation strategies, such as random server allocation or allocation of least loaded server, 
are also explored. We use the model of [30] for CDN, but go a step further by looking at a 
fully dynamic optimization problem as an MDP. 

In Shah and de Veciana [31], a centralized content delivery system with collocated 
servers is studied. Files are replicated in these servers and these serve as a pooled resource 
which cater to file requests. The article shows how dynamic server capacity allocation 
outperforms simple load balancing strategies such as those which assign the least loaded 
server, or assign the servers at random. The article also goes on to study file placement 
strategies that improve the utility of the system. 

Several works including Leconte et al. [19, 20] and Moharir et al. [23] look at large-
scale content delivery networks, focusing on placement of content in the servers. Of these, 
Leconte et al. [19] also studies the greedy method of server allocation and its efficiency 
under various regimes of server storage capacities, and under what content placement 
strategy it would be efficient. Zhou et al. [37] studies strategies for scheduling after the 

                                                      
1We use the phrase ‘Whittle-like’ instead of just Whittle because the scheme introduced in 
this paper, although in the same spirit of Whittle’s original paper, is not exactly the same. 
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content placement stage, and proposes an algorithm, called the Fair Sharing with Bounded 
Degree (FSBD), for server allocation. 

In Shah and de Veciana [32], multiclass queuing systems are studied with different 
arrival rates. The service rates are constrained to be in a symmetric polymatroid region. 
Large scale systems with a growing number of service classes are studied and several 
asymptotic results regarding fairness and mean delays are obtained. 

Multi-server models are studied in Tsitsiklis and Xu [33] with each server connected 
to multiple file types and each file type stored in multiple servers, thereby creating a bipartite 
graph. This article focuses on the scaling regime where the number of servers goes to 
infinity. It is shown that even if the average degree << :=nd n  the number of servers, an 
asymptotically vanishing queuing delay can be obtained. These results are based on a 
centralized scheduling strategy. 

In Bonald and Comte [6], multi-server queues are studied with an arbitrary 
compatibility graph between jobs and servers. The paper designs a scheduling algorithm 
which achieves balanced fair sharing of the servers. Several parameters are analyzed using 
this policy by drawing a parallel between the state of the system at any time to that of a 
Whittle network. 

However, none of the above papers [6, 19, 20, 23, 31, 32, 33] show Whittle indexability 
of the respective resource allocation problems they address. The work closest in spirit to 
ours is Larranaga et al. [18], which studies a Whittle indexability scheme for birth and death 
restless bandits. These model server allocation to queues, but it does not study the case when 
there are multiple servers storing the same file types as is the case in general content delivery 
networks. In the present work we take an alternative approach which considers a dynamic 
optimization or control problem that can be interpreted as a problem of scheduling restless 
bandits. We analyze it in the framework laid down by Whittle for deriving a heuristic index 
policy [36]. To the best of our knowledge, this paper is the first to show Whittle-like 
indexability of the server allocation problem in the setting of a CDN server cluster that uses 
resource pooling, with the objective of minimization of the expected time-averaged file 
request storage cost. The fact that this problem is Whittle-like indexable allows us to 
decouple the original average cost MDP, which is difficult to solve directly, into more 
tractable separate control problems for individual file types. The decoupling leads to an 
efficient algorithm based on computation of Whittle-like indices, which outperforms several 
natural heuristics for the problem. Our proof techniques broadly follow the general scheme 
of Agarwal et al. [1], albeit with some differences. 

The Whittle index heuristic has been successfully applied to various resource 
allocation problems including crawling for ephemeral content [3], congestion control [4], 
UAV routing [26], sensor scheduling [25], routing in clusters [24], opportunistic scheduling 
[10], inventory routing [2], cloud computing [11] etc. General applications to resource 

Queueing Models and Service Management

176



allocation problems can be found in Larranaga et al. [18]. Book length treatments of restless 
bandits can be found in Jacko [16] and Ruiz-Hernandez [28]. 

The rest of the paper is structured as follows. In section 2, we discuss our model and 
formulate the problem as a Markov Decision Process (MDP). Section 3 shows various 
structural properties of the value function of the MDP formulated in section 2. In section 4, 
we prove that the problem of server allocation in the resource pooling setting is in fact 
indexable and provide a scheme to compute this index. Section 5 discusses other heuristics 
for server allocation and presents numerical comparisons of the proposed index policy with 
other heuristics. We conclude the paper with a brief discussion in Section 6. 

We conclude this section with a brief introduction to the Whittle index [36]. Let 
( ), 0,1 ,iX t t i N    be N Markov chains, each with two modes of operations: active 

and passive, with associated transition kernels 1 0( | ), ( | )p p    respectively. Let 

1 0( ( )), ( ( ))i i i ir X t r X t  be instantaneous rewards for the thi chain in the respective modes with 

1 0( ) ( ).i ir r    The goal is to schedule active/passive modes so as to maximize the total 
expected average reward  

1

( )
=0

1 [ ( ( ))]lim
T

j j
j tT t j

E r X t
T 




  

where ( ) =1j t if j th process is active at time t and 0 if not, under the constraint 
( ) ,j

j
t M t   , i.e., at most M processes are active at each time instant. This hard 

constraint makes the problem difficult to solve (see Papadimitriou and Tsitsiklis [27]). So 
following Whittle, one relaxes the constraint to  

1

=0

1 [ ( )] .lim
T

j

T t j
E t M

T





  

(Whittle considers an equality constraint, but the logic here is analogous.) This makes it a 
problem with separable cost and constraints which, given the Lagrange multiplier ,  
decouples into N individual problems with reward for passivity changed to 0 ( ).r    The 
problem is Whittle indexable if under optimal policy, the set of passive states increases 
monotonically from empty set to full state space as  varies from  to .  If so, the 
Whittle index for a given state can be defined as the value of  for which both modes 
(active and passive) are equally desirable. The index policy is then to compute these for the 
current state profile, sort them in decreasing order, and render active the top M processes, 
the rest passive. The decoupling implies ( )O N growth of state space as opposed to the 
original problem, for which it is exponential in .N  Further, the processes are coupled only 
through a simple index policy. The latter is known to be asymptotically optimal under 
certain conditions as ,M N  in constant ratio (refer to Weber and Weiss [34]). However, 
no convenient general analytic bound on optimality gap seems available. 
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2. Model and Problem Formulation 
Consider a server cluster that contains multiple servers, each of which stores one or 

more files. We represent this system using a bipartite graph2 = ( ; )G F S E where F is a 
set of N files, S is a set of M servers, E is the set of edges, and each edge e E  
connecting a file i F and server j S implies that a copy of file i is replicated at server 
j (see Figure 1). 

   
Figure 1. The model used in this paper. A link between file i and server j  
denotes that a copy of file i is stored in server .j  

For j S , jF denotes the set of files that are stored in server j . Similarly, for i F ,
iS denotes the set of servers that store file i . Requests for file i F arrive to the server 

cluster according to an independent Poisson process with rate i and are queued in a 
separate queue for each file type. We assume that the job (requested file) sizes have an 
exponential distribution. (For sake of simplicity, we assume their means to be identically 
equal to one. More general cases can be handled by suitable scaling of the ( )ij  ’s defined 
below.). Let ( )ij t denote the rate at which server j transmits file type i at time t . Then 
the capacity constraint at each server can be expressed as  

 ( ) , 0, {1,2, , },ij
j

i Fj

t t j M 


     (1) 

where j is the maximum permissible rate of transmission from server .j  
Let ( )if x be the cost for storing x jobs in the queue i . We assume ( )if  to be an 

increasing strictly convex function (see Bertsekas [5]) for =1,2, , .i N  (We comment on 
the strict convexity assumption at the end of Section 3). Our aim is to minimize the long run 
average cost, given by  
                                                      
2Recall that a graph = ( , )G V E is said to be bipartite if its node set V can be partitioned 
into two sets F and S such that every edge in E is between a node in F and a node in S
[35]. 
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0

=1

1limsup [ ( ( ))] ,
NT i i

T i
f X t dt

T
  

where ( )iX t is the length of queue i at time t . 
This makes it a continuous time Markov decision process with the state process given 

by 1ˆ ( ) = [ ( ), , ( )], 0,NX t X t X t t  taking values in the state space NS where 
:={0,1,2, }S  with control process ,( ) := { ( )} , 0ij

i F j Si
t t t     , taking values in the 

compact control space := { , , : }.ij ij
i ji Fj

U u i F j S u j


     We shall consider as 
admissible control policies the { ( )}ij  whereby one has the controlled Markov property, 
i.e., for 0, > 0t  ,  

 ˆ ˆ( ( ) = | ( ), ( ), ) = ( | ( ), ( )) ( )P X t y X s s s t q y x t t o        

for a ‘controlled rate matrix’ = [[ ( | , )]], , ,Nq q y x u x y S u U  . A special case is that of 
the control policies wherein ( )t is adapted to ˆ ( ),X s s t , for all 0t  . As usual, one 
has the important special subclasses of control policies, viz., stationary deterministic policy 
wherein ˆ( ) = ( ( ))t v X t for a prescribed ( ) : ,Nv S U  and stationary randomized policy 
wherein the conditional law of ( )t given ˆ ( ), ,X s s t  depends on ˆ ( )X t alone. 

Stability assumption: We assume there exists a stationary randomized policy under 
which the cost is finite (which in particular implies that the policy is stable in the sense that 
the corresponding Markov chain ˆ ( )X  is positive recurrent), and, in addition,  

> , .i
j

j Si

i


   (2) 

The stability assumption above ensures the existence of at least one stationary 
randomized policy under which the process is stable. Our assumption on the if ’s implies 
that ( ) = ,lim i

x f x i   , implying in turn that the cost is near monotone [9] in the sense 
that it penalizes high values of the state ˆ ( )X t . In particular, an unstable control policy 
that leads to transience or null recurrence will lead to an infinite cost. 

Note that ( ),1 ,iX i N    are in fact individual controlled Markov chains coupled 
through their controls that have to satisfy the constraint (1) that couples them. This forces 
us to view the combined process ˆ ( )X   as a single controlled Markov chain. The Whittle 
device we use below allows us to undo this for purposes of analysis via a clever heuristic. 
Specifically, the controlled rate matrix ( ), 0,iQ t t   of ( )iX  is given by  
for > 0z ,  

 ( 1| , ( ), ) = ,i ij i
iQ z z t j S    

 ( 1| , ( ), ) = ( ),i ij ij
i

j Si

Q z z t j S t 
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 ( | , ( ), ) = ( ( )),i ij i ij
i

j Si

Q z z t j S t 


     

for = 0z ,  
 (1| 0, ( ), ) = ,i ij i

iQ t j S    
 (0 | 0, ( ), ) = .i ij i

iQ t j S    
Following the classic paper of Whittle [36], we relax the M instantaneous constraints (1) 
to M averaged constraint  

 
0

1limsup [ ( )] , {1,2, , },
T ij

j
T i Fj

t dt j M
T

 
 

    (3) 

where we assume that 0 ( ) , ,ij
jt i j t    . Specifically, we have replaced the M hard 

constraints (1) that apply at each time instant by M average constraints which allow the 
violation of (1) from time to time, but requires it to hold only in an average sense. In 
particular, the left hand side of (3) can be viewed as another average cost functional. This 
makes it a classical constrained Markov decision process (refer to Borkar [9]). This has an 
equivalent formulation as a linear program on the space of measures, in terms of the so 
called ergodic occupation measures [9]. These measures are defined as probability 
measures on the product space NS U that are of the form  

0 1( , ) = ( ) ( | ),dx du dx du x    

where 0 is the marginal on NS which is required to be the stationary distribution of the 
Markov chain controlled by 1( | ),du x  and the regular conditional law in the above 
decomposition is interpreted as a stationary randomized policy. The control problem can 
then be identified with the problem of minimizing the integral of the running cost 
ˆ( , , ) := ( )i

i
f f    w.r.t. this measure, a linear functional thereof, over the set of all 

ergodic occupation measures which turns out to be a closed convex set characterized by a 
set of linear equalities and inequalities. Specifically, one has 

 Minimize ˆ ( , )fd dx U  

 subject to: 0, ( ) =1,NS U    

          ( , ) ( | , , ) = 0.i i i ij
ii

dx du Q y x u j S   

See [9] for details. This facilitates the use of standard tools of abstract convex optimization 
in this context. While we do not need the details thereof here, we do require one consequence 
of it, viz., that it allows one to consider an equivalent unconstrained average cost problem 
with cost  

Queueing Models and Service Management

180



 
0

=1

1 ˆ( ( )) ( ( ) ) ,lim
NT i i ij

j j
T i j i Fj

f X t t dt
T

  
 

 
  
  
    

where ˆ 0j  is the Lagrange multiplier associated with the thj relaxed constraint  

0

1 [ ( )] .lim
T ij

j
T i

t dt
T

 


  

(We replace the conventional ‘ Tlim sup  ’ in analysis of average cost control by ‘ Tlim  ’ 
by exploiting the fact that the results of [9] allow us to restrict to stationary randomized 
policies for which the Tlim sup   above is in fact the Tlim  .) Since the cost is now 
separable in ( )iX  ’s, given the values of the Lagrange multipliers ˆ

j , this optimization 
problem decouples into separate control problems for individual processes ( )iX  , with the 
cost function for the i th process (file type) being given by  

 ˆ ˆ( , ) = ( ) ( ( ) ),i i i i ij
j j

j Si

c x f x t   


   

where 1 2
ˆ ˆ ˆ ˆ= [ , , ]M    is a vector containing all ˆ .j s   The average cost dynamic 

programming (DP) equation for this MDP for file type i is given by Guo and Hérnandez-
Lerma [14]  

 
0,

ˆ( ( , )min i i

ij j Sj i

c x
 

 
  

 ˆ ( ) ( | , , )) = 0,i i ij
i

y
V y Q y x j S


   (4) 

where  
  • i  is the optimal cost for file type i , 

• ˆ ( )iV

  is the value function (sometimes called the ‘relative value function’).  

In what follows, we drop the dependence of ˆ ( )iV

 on i and ̂ for sake of notational 

simplicity and bring it back only when needed for the analysis. Substituting the values of 
iQ  back in the DP equation and dropping the superscript i (except from ij ) for ease of 

notation, we have3 
for > 0x ,  

 
0,

ˆ( ( , ) ( 1) ( 1)min ij

ij j S j Sj i i

c x V x V x
 

  
   

      ( )( )) = 0,ij

j Si

V x 


   (5) 

equivalently,  
 

0,

ˆ( ( ) ( ) ( 1)min ij
j jij j S j Sj i i

f x V x
 

   
   

       

( 1) ( ) ( )( )) = 0.ij ij

j S j Si i

V x t V x 
 

      (6) 

                                                      
3Note that when the queue of file type i  is empty, no server needs to provide any service 
to that particular file type. 
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Adding ( )V x on both sides of equation (13), we get  
 

0,

ˆ( ) = ( ( ) ( ) ( 1) ( 1)min ij i ij
j jij j S j S j Sj i i i

V x f x V x V x
 

    
    

          

 ( )(1 ( ))).i ij

j Si

V x 


     (7) 

The equations for = 0x can be written in a simiar fashion with appropriate modifications. 
We now adapt the idea of uniformization to pass from a continuous time Markov chain 

to a discrete time Markov chain. If we scale all transition rates by a fixed multiplicative 
factor, it is tantamount to time scaling which will scale the average cost, but not affect the 
optimal policy. Hence without loss of generality, we can assume that the arrival and service 
rates are such that the coefficients of ( )V  that appear in the right hand side of equation (7) 
are between some > 0 and 1 and can be interpreted as transition probabilities of a discrete 
time controlled Markov chain. Thus (7) is a dynamic programming equation for a discrete 
time Markov decision process with average cost. Note that the equation at best specifies V
only up to an additive scalar, so for its well-posedness, in the least we need to add a 
qualification such as (say) (0) = 0.V  We shall make this choice (which is by no means 
unique) and stay with it. See Borkar [8], Chapter VI, (in particular, Theorem 4.1, p. 87) for 
a complete treatment of well-posedness of (7). One only needs to verify the assumption 
therein of ‘stability under local perturbation’ which states that a stable stationary 
deterministic policy remains so if we change the control choice at exactly one state. This is 
immediate if each state has at most finitely many successors, as is the case here (see Lemma 
1.1, p. 71, of [8]). We take the foregoing as given, suffice to say that the near-monotonicity 
of the cost and existence of a stable stationary randomized policy with finite cost by virtue 
of the ‘Stability Assumption’ above play a crucial role in establishing the DP equation. 

As we are working with a fixed i , the control space is := [0, ]i
jj Si

U 
 and a 

stationary deterministic policy corresponds to ( ) = ( ( ))ij n X n  for a measurable 
: iS U , where ( )X  is the corresponding controlled Markov chain, now in discrete time 

(We drop the superscript i for notational convenience.). We shall identify this policy with 
the map  by a standard abuse of notation. 

The expression which is to be minimized on the right hand side of (7) is linear in 
,ij

ij S   and each ij has the capacity constraint which restricts the values of ij to be 
j , i.e., [0, ]ij

j  . This, combined with the fact that the objective is linear, ensures 
that the minimum is attained at a corner where each server is either serving at full capacity 
or at zero capacity, i.e., at = 0ij or =ij

j  for all ij S . 
This achieves the first simplification in Whittle’s program, viz., to decouple the 

original hard problem into N simpler problems. But unlike in the original Whittle case, 
where the decision was binary between active and passive modes, we have multiple decision 
variables, ij for each i . The foregoing shows that each one separately entails a binary 
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decision between 0 and j respectively. Our approach to arriving at a Whittle-like policy 
is the most common one, viz., to first show the existence of an optimal threshold policy and 
then establish the monotonicity of the threshold in the Lagrange multiplier. Even the notion 
of a threshold does not make sense in a control space without a natural order, thus we need 
to reduce the problem to a situation where such is the case. This suggests that we apply the 
Whittle philosophy separately to each control variable in isolation, keeping the rest fixed at 
their respective capacities [ ].  We make this the basis for coming up with a Whittle-like 
index policy. Like the original Whittle scheme, this too is a heuristic, which we later 
compare with other natural heuristics empirically and find that it performs quite well in 
comparison. Our motivation for this specific choice and no other is as follows. In principle, 
we could fix any values of all but one control variable in order to reduce it to a single control 
variable case, but fixing the rest at maximum rate, which aids stability, puts the least onus 
on the flagged control variable vis-a-vis stability. To amplify this point, consider, e.g., the 
other extreme where we fix all other rates to zero. Then to ensure the existence of at least 
one stable stationary randomized policy for the decoupled problem, we would need a 
stronger restriction than the above ‘Stability Assumption’. Observe in particular that we are 
now considering separate control problems associated not only for each process i  
separately, but for separate pairs of process ( )iX  and control ( )ik  for a prescribed k , 
having fixed ( ) , .ij

j j k      The sole variable being manipulated now takes values in 
an ordered set [0, ]k which facilitates search for an optimal threshold policy. 

This also has the added bonus that all but one Lagrange multiplier drop out of each 
such DP equation, facilitating later the definition of Whittle-like index that would otherwise 
be quite messy. 

We emphasize again that this is a heuristic policy just like the original Whittle case and 
need not be optimal. An optimal policy for the exact coupled problem will face the curse of 
dimensionality in a major way. To see this, suppose we use finite buffers of a constant size 
for each queue as an approximation and assume ,i jS F are independent of ,i j  
respectively, denoted simply as , ,i jS F respectively. The state space for the original 
problem is the product of individual state spaces of the queues, which grows exponentially 
in | |S . In contrast, after decoupling the problem using Lagrange multipliers, it grows 
linearly in | |S . This is exactly the same problem which motivates the original Whittle 
index. 

Since all other servers are serving at full rate, we have that  
 ( ) = , , , .s.t. ( ) > 0.ij i

j it j S j k t X t       

Let ˆ=k k k   . We interpret k as the marginal disutility of allowing server k to not 
serve when all other servers containing the file type are already serving at their full capacity. 
(This is only an interpretation of k , in reality the servers may not always serve at full 
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capacity if the queue is not large enough.) This disutility plays the role of ‘subsidy’ in the 
original Whittle formulation which dealt with a reward maximization problem instead of 
cost minimization. On substituting = , ,ij

j ij S j k     , we have, for > 0x ,  

1 2( ) = ( ) min ( | ) ( ), ( | ) ( ) .k
y y

V x f x p y x V y p y x V y 
 

   
 

              (8) 

Here 1( | )p   is the transition probability when the server does not serve this file type and is 
given by (for > 0x )  

 1( 1| ) = ,p x x   

 1
,

( | ) =1 ( ),j
j S j ki

p x x 
 

    

 1
,

( 1| ) = ,j
j S j ki

p x x 
 

   (9) 

and 2( | )p   is the transition probability when the server serves this file type and is given by 
(for > 0x )  

 2 ( 1| ) = ,p x x   

 2 ( | ) =1 ( ),j
j Si

p x x 


   

 2 ( 1| ) = .j
j Si

p x x 


   (10) 

For = 0x , the transition probabilities 1( | )p   and 2( | )p   are the same and are given by 
(for =1,2i )  

 (1| 0) = ,ip   
 (0 | 0) =1 .ip   

In the next section, we prove some structural properties of the value function. 

3. Structural Properties of the Value Function 
This section closely follows in spirit the approach of Agarwal et al. [1], Borkar [8], 

and Borkar et al. [11, 12], but with significantly different proofs. 

Lemma 3.1 ( )V   is non-decreasing in the number of files.   

Proof. (Sketch) We use a ‘pathwise coupling’ argument. Consider initial conditions <x x  
in S  and an optimal, therefore stable (i.e., positive recurrent) stationary deterministic 
policy ( )v  . Consider the controlled chains ( ), ( ), 0,X n X n n   as follows. We use the 
standard formulation of a controlled Markov chain as a dynamics driven by control and 
noise, i.e.,  
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 ( 1) = ( ( ), ( ), ( 1)),X n F X n n n    

 ( 1) = ( ( ), ( ), ( 1)),X n F X n n n     

with (0) = , (0) = ,X x X x   where { }n is the control process, { ( )}n is i.i.d. noise 
uniform on [0,1], and F is some measurable map. Note that the map ,F  the driving noise 
{ ( )},n  and the control sequence { ( )}n is common across both. It is always possible to 
replicate the processes in law on a common probability space in this fashion. In addition, 
we choose ( ) = ( ( )),n v X n n   . This choice is optimal for ( )X   , but not for ( )X  . In 
particular, ( )X   is a positive recurrent Markov chain and hits state 0  infinitely often with 
probability 1. Each time this happens, ( ) ( )X X    drops by 1, hence  

:= min{ 0: ( ) = ( )}< , . ..n X n X n a s    
Note that by our construction,  

• we have  
 ( ) > ( ) < ,X m X m m    (11) 
 = ( ) ,X m for m   (12) 

and 
• for <n  , either ( 1) ( 1) = ( ) ( )X m X m X m X m     or 

( 1) ( 1) = ( ) ( ) 1X m X m X m X m       and the latter case occurs only if 
( ) = ( 1) = 0X m X m  and ( 1) = ( ) 1X m X m   .  

For = ( )x X m , respectively, ( )X m , (7) leads to  

    ( ( )) ( ( )) ( ( 1)) ( ( 1)) .E V X m V X m E V X m V X m       

Iterating, we get for 1T  ,  

 ( ) ( ) ( ( )) ( ( )) .V x V x E V X T V X T        

Letting T  and using Fatou’s lemma, we have  

 ( ) ( ) ( ( )) ( ( )) = 0.V x V x E V X V X      

Lemma 3.2. ( )V   is strictly convex, strictly increasing, and has the property of increasing 
differences, i.e., for > 0z  and >x y   

 ( ) ( ) > ( ) ( ).V x z V x V y z V y     

Proof. The proof follows along similar lines as Lemma 6 in Borkar and Pattathil [12] and 
Theorem 4 in Agarwal et al. [1], but with several crucial differences. The argument uses 
induction. We embed the state space to the positive real line, .  Take 

1 2 2 1, , > > 0x x S x x . Let ( )nV  denote the  discounted n  step problem (For < 0x , 
we define ( ) = (0)n nV x V ). Let u be the optimal control for state x at time n . We have  
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1 1 1( ) = ( ) ( 1) ( )(1 ) ( 1) (1 )n n n i n j
i j k

V x f x V x V x V x u       


            

 1 1(1 ) ( ) ( 1).k n k nu V x u V x         (13) 

We have that 0 ( ) ( ),V x f x  which is strictly convex. Assume that 1nV  is convex. For
1 2,x x as above, let , =1,2iu i , be the minimizers for = , =1,2,ix x i respectively. in (13). 

Then  
1 2 1 2( ) ( ) = ( ) ( )n nV x V x f x f x   

 1 1 1 2( )(1 ) ( )(1 )n j n j
j j

V x V x            

 1 1 1 2( 1) ( 1)n nV x V x         
 1 1 1 2( 1) ( 1)n j n j

j k j k
V x V x    

 

      

 1 1 1 1 1 1 1(1 ) (1 ) ( ) ( 1)k k n k nu u V x u V x            
 2 2 1 2 2 1 2(1 ) (1 ) ( ) ( 1).k k n k nu u V x u V x            

Consider two separate cases depending on the values of 1 2,u u .  

Case 1: 1 2=u u   
 1 2( ) ( )n nV x V x  

 *1 1 2 1 2
12 2 (1 )

2 2n j
j

x x x xf V 

         
   

  

 1 2 1 2
1 12 1 2 1

2 2n n j
j k

x x x xV V   


          
   

  

 1 2 1 2 1 2
12 1 2 1

2 2 2k k n
u u u u x xV   

               
     

 

 1 2 1 2
12 1

2 2k n
u u x xV  

        
   

 

 *2 1 2 1 2
12 2 (1 )

2 2n j
j

x x x xf V 

         
   

  

 1 2 1 2
1 12 1 2 1

2 2n n j
j k

x x x xV V   


          
   

  

 1 2 1 2
3 3 1 3 12 (1 ) 2 (1 ) 2 1

2 2k k n k n
x x x xu u V u V     

            
   

 

 1 2= 2 .
2n

x xV  
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Here 3u is the optimal control when the state is 1 2

2
x x . Inequality *1 follows from the 

convexity of ( )f  and 1( ).nV    Inequality *2 follows from the definition of the optimal 
control 3u .  

Case 2: 1 2u u  

Consider the case 2 1= 0, =1u u (The other case is similar)  
 1 2( ) ( )n nV x V x  

 *1 1 2 1 2
12 2 (1 )

2 2n j
j

x x x xf V 

         
   

  

 1 2 1 2
1 12 1 2 1

2 2n n
x x x xV V  

           
   

    

 1 2 1 1( ) ( 1)j k k n k n
j k

V x V x    


     

 1 2 1 2
1= 2 2 2 (1 )

2 2k n i
i

x x x xf V  

         
   

  

 1 2 1 2
1 12 1 2 1

2 2n n i
i k

x x x xV V   


          
   

  

 1 2 1 1
1 1 12 1 2 ( ) ( 1)
2 2 2k k n nV x V x   

             
 

 *2 1 2 1 2
12 2 (1 )

2 2n i
i

x x x xf V 

         
   

  

 1 2 1 2
1 12 1 2 1

2 2n n i
i k

x x x xV V   


          
   

  

 1 2 1 2
1 1

1 1 12 1 2 [ 1 ]
2 2 2 2 2k k n n

x x x xV V   

              
     

 

 *3 1 2 1 2
12 2 (1 )

2 2n i
i

x x x xf V 

         
   

  

 1 2 1 2
1 12 1 2 1

2 2n n i
i k

x x x xV V   


          
   

  

 1 2 1 2
3 3 1 3 12 (1 ) 2 (1 ) 2 1

2 2k k n k n
x x x xu u V u V     

            
   

 

 1 2= 2 .
2n

x xV  
 
 

 

Here 3u is the optimal control when the state has 1 2

2
x x files. Inequalities *1,*2 follow 
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from the convexity of ( )f  and 1( )nV   (we use the fact that convexity implies non-
decreasing differences, i.e., ( ) ( ) ( ) ( )f x a f x f y a f y     for > , > 0).x y a Inequality
*3 follows from the definition of the optimal control 3u . 

Next consider the case where 1 2> = 0x x . We have  

 1 1(0) = (0) (1 ) (1 ) (0) (1).n k n nV f u V V          

From this equation, we see that = 1u if > 0k and = 0u otherwise. We rearrange the 
above equation as  

 1(0) = (0) (1 ) (1 ) (0)n k i n
i

V f u V        

 1 1 1(0) (0) (1).i n k n n
i k

V V V     


     

We have  
 1( ) (0)n nV x V  

 1 1 1= ( ) (0) ( ) 1n i
i

f x f V x 
 

   
 

  

 1 1 1 1(0) 1 ( 1) (1)n i n n
i

V V x V     
          
 

  

 1 1 1( 1) (0)n i n i
i k i k

V x V    
 

     

 1 1 1 1(1 ) (1 ) ( )k k nu u V x       
 1 1 1 2 1( 1) (1 ) (0)k n k k nu V x u V          

 *1 12 ,
2n
xV    

 
 

where *1 is derived using convexity and by following similar arguments as in the case 
when 2 > 0.x  

Therefore, by induction, we have that nV is convex for all n . From equation (13), we 
see that nV is the sum of a strictly convex function f and a convex function 1nV  when 

0x  . This shows that nV is in fact a strictly convex function for > 0x . (Note that 0 = ,V f  
which is also strictly convex.) Letting V denote the value function of the infinite horizon
 -discounted problem, we have nV V pointwise by convergence of the value iteration 

algorithm. Since ( ) ( ), 0nV x f x x  is convex for all n and convexity is preserved under 
pointwise convergence, ( ) ( ), 0,V x f x x    is convex for all .  Letting 

( ) := ( ) (0)V x V x V   , so will be V f  for all .  By the vanishing discount argument 
of [1], V  the value function V of the average cost problem, pointwise. Thus V f is 
convex. Since f is strictly convex, it follows that ( ), 0,V x x   is strictly convex. Strict 
convexity and non-decreasing property imply strict increase on [0, ) . Strict convexity also 
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implies strictly increasing differences. This proves the claim. 

Lemma 3.3. The optimal policy is a threshold policy, i.e., *x such that if *> ,x x  the 
server serves at full capacity, otherwise the server does not serve this file type.  

Proof. In order to prove this, we show that the function  

 2 1( ) = ( | ) ( ) ( | ) ( )g x p y x V y p y x V y   

is strictly decreasing. On simplifying this expression, we get  

 ( ) = ( ( 1) ( )),kg x V x V x    (14) 

which is a strictly decreasing function in x  by Lemma 3.2. Thus the minimizer in (16) 
changes from one to the other as this quantity crosses k , while remaining fixed on either 
side thereof. This implies that the optimal policy is a threshold policy.  

Note: We have made the assumption that the cost function f is strictly convex. We can 
relax this assumption to mere convexity and get analogous statements of Lemma 3.1 and 
3.2, except that increasing will be replaced by non-decreasing. The only difference it makes 
is that the choice of threshold, and therefore of our Whittle-like index, may become non-
unique over a closed interval wherever the value function has a linear patch. This can be 
disambiguated by using the convention that we use the smallest candidate value as the index, 
i.e., the smallest value of the state x  for which it is equally desirable to be active or passive. 
It is easy to see that this is well defined and moreover, facilitates the ordinal comparisons 
in an unambiguous manner. Note that the scheduling policy depends only on such 
comparisons. Thus this does not cause any inconsistency and remains a plausible heuristic, 
though it is not clear how the performance get affected vis-a-vis the case when such 
ambiguities do not arise. That it still is a reasonable heuristic is supported by our simulations 
on a linear cost function reported below. 

4. Whittle-like Indexability 
We next prove a Whittle-like indexability result in the spirit of [36]. We use the phrase 

‘Whittle-like’ because our problem formulation differs from that of [36], though it builds 
upon it. 

Let  denote the stationary probability distribution when the threshold is . That is, 
if the number of jobs is  , then the server does not transmit, and if number of jobs is > , 
then the server transmits at full rate. We have the following lemma.  

Lemma 4.1. 
=0

( )
i

i  is strictly increasing with .  

Proof. Let 
;

ˆ = jj S j ki
 

  . The Markov chain formed with a threshold of is shown in 
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Figure 2. This is a time reversible Markov chain with stationary probabilities given by  

 ( ) = (0)( ) , if ,
ˆ

ii i 



  

 ( ) = (0)( ) ( ) , if > ,
ˆ ˆ

i

k

i i 
  

 


 

where (0) is the stationary probability of state 0.  

   
Figure 2. Markov Chain. 

From this, we see that  

 

1

=0

( ) 1
ˆ

( ) 1
ˆ( ) = ,

( ) 1 ˆˆ ( ) ( )
ˆ ˆ( ) 1

ˆ

i

k

k

i





 
  















  

  

which is a strictly increasing function of .  
(Note that this formula holds when ̂  . If they are equal, we have 

=0

1( ) = ˆi
k

k

i  






  which is again an increasing function of .)  

Theorem 4.1. This problem is Whittle-like indexable in the sense that the set of passive 
states decreases monotonically from the whole state space to the empty set  as .    

Proof. The proof is along the lines of Theorem 1 in Borkar and Pattathil [12]. It has been 
reproduced for sake of completeness. 

The optimal average cost of the problem is given by  

 ( ) = inf { ( ) ( ) ( )},
i i B

f i i i    


   

where  is the stationary distribution and B is the set of passive states. The infimum 
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( )   of this quantity affine in  is over all admissible policies, which by Lemma 3.3 is 
the same as the infimum over all threshold policies. Hence ( )  is concave non-decreasing 
with slope < 1. As a concave function of a scalar variable, it is differentiable except at 
countably many points and has right and left derivatives everywhere, which are non-
increasing individually and across points of non-differentiability (i.e., at such points, the 
right derivative is less than or equal to the left derivative). By the envelope theorem 
(Theorem 1, Milgrom and Segal, [22]), the derivative of this function with respect to  is 
given by  

 
( )

( )

=0
( ),

x
x

i
i


  

where ( )x  is the optimal threshold under  . In fact, since the threshold is discrete, it is 
seen that ( )  is piecewise linear with this derivative at points of differentiability, whereas 
at points of non-differentiability the two possible values thereof define the super-gradient. 
Since ( )  is a concave function, its derivative has to be a non-increasing function of  , 
i.e.,  

 
( )

( )

=0
( ) is non-increasing with .

x
x

i
i


   

But, from Lemma 4.1, we know that
=0

( )
j

j is a strictly increasing function of ,  

where is the threshold. Then ( )x  must be a strictly decreasing function of  . The set 
of passive states for  is given by [0, ( )].x   It follows that the set of passive states 
monotonically decreases to  as .   This implies Whittle-like indexability. 

4.1. Proposed policy 
We propose the following heuristic policy inspired by [36]: 

Our decision epochs are the time instances when there is some change in the system, 
i.e., either an arrival or a departure occurs. For each server j S , the index computed for 
each file type connected to this server is known. The file type which has the smallest index 
is chosen and the server serves it at full rate. Each time there is either an arrival into a file 
type or there is a job completion, the new indices are sent to the server which then decides 
which queue to serve. 

4.2. Computation of the Whittle-like index 

The Whittle-like index ( )x when the number of jobs is x , is computed by the 
following linear system of equations and an iterative scheme. The scheme is for a fixed x , 
so we suppress the x -dependence of ( )x and denote it simply as  . We denote the 
iterates as { }n , which use the solution of the linear system as a subroutine at each update. 
We have used ( ), ( )V   in place of ( ),V  to make the  -dependence ( ( )x -
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dependence to be precise) of ,V  explicit as required by this part of analysis. The scheme 
is as follows. 

For each 0n  , do the following   

 1. Given the current iterate ,n  to solve 

 1( ) = ( ) ( | ) ( ) ( ),n n
n n

y
V y f y p y y V y
 

  


   if ,y x  (15) 

 2( ) = ( ) ( | ) ( ) ( ),n
n n

y
V y f y p y y V y
 

 


  if > ,y x  (16) 

(0) = 0.nV


 (17) 

This solves the Poisson equation for the given threshold policy with threshold x and the 
disutility parameter  fixed at n . 

 2. Update n to 1n  according to the iteration  

 1
2= ( ( | ) ( )n n

n
x

p x x V x


  



   1( | ) ( ) ( )).n
n

x
p x x V x x






    (18) 

Here  is a small step size (taken to be 0.01).  This iteration makes an incremental 
correction to n in the direction of decreasing the discrepancy between the returns for 
active and passive actions.  

We analyze this scheme under the simplifying assumption that f is strictly convex. 
The proof of convexity of V shows that V will also be strictly convex, hence 

( ) ( )x V x z V x   for > 0z strictly increasing. In particular, the argument of Lemma 
3.3 then shows that the Whittle-like index is uniquely defined for each x . 

Theorem 4.2. For each fixed x , ( )n x converges to an ( )O  neighborhood of the 
Whittle-like index as n  .  

Proof. Since  is small, we can view (18) as an Euler scheme for approximate solution by 
discretization [13] of the ODE  

 ( ) = ( ( )) ( ),t F t t    
where  

 2 1( )( ) := ( | ) ( ) ( | ) ( ).n n
y y

F y p y y V y p y y V y
 


 

    

Equations (15)-(17) constitute a linear system of equations, hence ( ), ( )V x    are linear 
in .  Thus the above ODE is well-posed. Furthermore, this is a scalar ODE with 
equilibrium given by that value of  for which  

 2 1= ( | ) ( ) ( | ) ( ).n n
x x

p x x V x p x x V x
 


 

     

i.e., the Whittle-like index at state x , unique as observed above. Above this value, the ODE 

Queueing Models and Service Management

192



has a negative drift and below it, a positive drift. Thus it is a stable ODE (i.e., the trajectories 
do not blow up). As a stable scalar ODE, it converges to its equilibrium. Interpolate the 
iterates as ( ) = ( )t n  for =t n with linear interpolation on [ ,( 1) ],n n  .n  Define 
[ ]:= sup{ : < ( 1) }t n n t n    . Then we have  

( ) = ( ( )) ( ) ( ), . .,t F t t t a e      

where ( ) := ( ([ ])) ( ( )).t F t F t    It is easy to check that given the boundedness of 
trajectories and linearity of ,F | | is ( ).O   The convergence of iteration (18) to a 
neighborhood of this equilibrium then follows from Theorem 1 of Hirsch [15] by standard 
arguments.  

Remarks:  
1. We have not imposed any restriction on the sign of ( )x though it is known a priori, 

because the stable dynamics above with a unique equilibrium automatically picks up 
the right ( ).x  The linear system (15), (16) and (17) is solved as a subroutine by a 
suitable linear system solver. 

2. The convergence to a neighborhood of the desired limit rather than to the limit itself is 
due to the fact that we are using a constant stepsize, leading to non-vanishing 
discretization errors. See Butcher [13] for a detailed error analysis of Euler method in a 
much more general set-up. We can get exact convergence by using slowly decreasing 
stepsizes, i.e., stepsizes satisfying = 0na a  slowly enough so that =nn

a  . But a 
constant stepsize as above offers the advantage that it allows the iterates to track a slowly 
varying environment. 

 
5. Simulations 

In this section, we report simulations to compare the performance of the proposed 
Whittle-like index policy with other natural heuristic policies given as follows: 

  • Balanced Fair Allocation: This is a centralized scheme for allocating server 
capacities. See Bonald and Proutiere [7] for more details.  

• Uniform Allocation: At each instant in time, each server splits its rate equally among 
all the files that it contains.  

• Weighted Allocation: The server rates are split according to prescribed weights 
proportional to the arrival rates into the different file types.  

• Random Allocation: The decision epochs are the same. At each instant, for each 
server, a file type is chosen randomly and the server serves this at full capacity.  

• Max-Weight Allocation: Each server serves at full capacity that file type which has 
the most number of jobs at any given instant.  
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We first compare the Whittle-like policy with the unconstrained optimal scheme and 
the balanced fairness allocation scheme for the network shown in Figure 3. The results of 
the simulations are shown in Figure 4. The values of parameters are as follows: 

1 1 2 2
1 2= 0.2; ( ) =13 ; = 0.1; ( ) =10 ; = 0.2; = 0.2f x x f x x    . The unconstrained optimal 

value for the network in figure 3 is computed using the following set of iterative equations  

 1 2
1 1 2 1 2( , ) = ( ) ( ) (0,0)n nV x x f x f x V   1 2

{1,2,3,4}
( [ ( ) | , ]),min i

n
i

V x x


   

 1 1 2= ( [ ( ) | , ]).i
n n

i
u argmin V x x   

Here, the control u denotes the following: = 1u denotes server 1,2 serve file 1; = 2u  
denotes server 1 serves file 1 and server 2 serves file 2 ; = 3u denotes server 1 serves 
file 2 and server 2 serves file 1; = 4u denotes server 1,2 serve file 2 . The shorthand 
notation [ | ]i   denotes the conditional expectation with respect to the transition 
probability under control {1,2,3,4}i . 

   
Figure 3. The Network that we use for simulations. 

     
Figure 4. Comparison of Whittle-like policy, True optimal, and Balanced Fairness 
scheme. 

  
The second network that we consider is shown in Figure 5. The parameters in this 

simulation are as follows: 1 1= 0.1, ( ) =10 ,f x x 2 2= 0.2, ( ) = 20 ,f x x 3 = 0.1,  
3( ) =10 ,f x x 1 2= 0.2, = 0.3.   
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Figure 5. The Network that we use for simulations. 

Figure 6 shows the Whittle-like indices assigned by file types 1 and 2 to server and 
Figure 7 shows the Whittle-like indices assigned by file type 1 to the two servers. 

   
Figure 6. Whittle-like index assigned by different files to the same server. 

   

     
Figure 7. Whittle-like index assigned by the same file to different servers. 
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Figures 8 and 9 compare performance of the various methods that were described 
earlier in this section4. We can see that the Whittle-like index based policy performs better 
than the other methods of server allocation. 

   
Figure 8. Comparison of Whittle-like policy with Uniform and Random policies.  

      
Figure 9. Comparison of Whittle-like policy with Weighted and Max Weight 
policies.  

Figure 10 shows simulation results for the model with 10 file types and 10 servers such 
that file type i is stored in servers , 1(mod10).i i  = 0.2, ( ) =15 , = 0.2i i

if x x   for

                                                      
4We have separated these figures for better comparison. This is because the performance 
of the uniform and random allocation is much worse than the other policies. 

Queueing Models and Service Management

196



=1, 4, 7,10.i = 0.3, ( ) = 20 , = 0.3i i
if x x  for = 2, 5, 8.i = 0.1,i ( ) =10 , = 0.2i

if x x   
for = 3,6,9i . Again, the Whittle-like policy shows a clear advantage. 

   
Figure 10. Comparison of Whittle-like policy with Weighted and Max Weight 
policies (10 file types and 10 servers). 

6. Conclusions and Future Work 
We have proved Whittle-like indexability of the server allocation problem in resource 

pooling networks. The allocation of servers using the Whittle-like scheme can be 
implemented in a distributed manner. The next step would be to extend this work to more 
general file types and possibly more complicated network topologies. 
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