
   

 

 

 

 

 

 

 

1. Introduction 
    The problem of statistical analysis of change point detection, estimation and hypothesis 
testing concerning the queueing parameters such as the arrival rate, service rate, traffic 
intensity etc., plays an extremely important role in the decision making analysis of queues. 
Many authors have studied the parameter estimation problem in queueing models. Bhat and 
Rao [9] have provided an exhaustive survey of results on inference for queueing systems. 
The work on various aspects of inference related to queues can be found in Clarke [14], 
Benes [8], Thiagarajan and Harris [27]. In most of the above works, the estimation and test 
of hypothesis are confined to the arrival/service rates of Poisson/exponential distribution 
and birth and death types of queue. 
    In many real life problems, theoretical or empirical deliberations suggest occasionally 
changing models. In such models, the main parameter of interest is the change point, which 
indicates when or where change occurred. There are two fundamental problems of interest 
related to this parameter, viz., detection of a change and estimation. 
    A sequence random variables 1 2, ,..., nX X X is said to have a change-point at  if 

)|( 11 xFXi : ( 1,2,...,=i ) and )|( 22 xFXi : ( = 1, 2,..., ),i n   where 1 1( | )F x  

2 2( | ).F x   We shall consider the situation in which 1F and 2F have known functional 
forms, but the change point,  , is unknown. Given a sequence of observations nxxx ,...,, 21 , 
the problem we shall be concerned with is that of making inferences about .  The 
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parameters 1 and 2 , which could be vector-valued, may be known or unknown; in the 
latter case, it might be of the interest to make inferences about these also. 
    The problem of testing and estimating change points in queueing theory has attracted 
much attention in the literature. Jain [17] has studied the change point problem for traffic 
intensity for /1/MM  queue in case of changing arrival rate. Acharya and Villarreal [1] have 
studied change point estimation of traffic intensity for changing service rate for mMM /1//  
queueing system. 

The problem of estimating change point of the inter-arrival time distribution in the 
queueing is of great interest. Besides maximum likelihood and least square estimates, the 
Bayesian method is also a very useful technique for estimating parameters. For Bayesian 
estimation of queueing parameters we can cite Muddapur [22], McGrath et al. [20], 
McGrath and Singpurwalla [21], Thirvaiyaru and Basawa [28], Armero [3, 4], Armero and 
Bayarri [5, 6], Ren and Wang [25]. In all these articles, independent random variables like 
number of arrivals, number of service completion, initial queue length, interarrival times, 
service times were observed and Beta and Gamma as prior distributions have been used to 
estimate traffic intensity, arrival and service rates in a single queue. Chowdhury and 
Mukherjee [13] obtained MLE as well as Bayesian estimator of traffic intensity (  ) on the 
basis of queue size at each departure point in /1/MM  queue and Cruz et al. [15] extended 
the work for / /M M s  queue. Almeida and Cruz [2] obtained better Bayesian estimates 
for the traffic intensity of /1/MM  queue and proposed Jeffreys prior to obtain the posterior 
and predictive distribution of parameter. 

The Bayesian inferential applications can play an important role in study of such 
problem of change points. In general, an investigator first performs a test to detect a change 
and, if it is indicated, then the change point is estimated under a specified loss function. 
Chernoff and Zacks [12], Broemeling [10], Smith [26], Guttman and Menzefricke [16], 
Raftery and Akman [24], Barry and Hartigan [7] and Lee [19] have studied the change point 
problem using the Bayesian method. Jain [17] obtained the Bayesian estimator of the change 
point for the interarrival time distribution in cGEk //  queueing model under squared error 
loss function. However, not much literature is found on Bayesian change point estimation 
in queue. 

In this paper we study the change point problem for the traffic intensity for /1/MM  
queue for changing arrival rate. And same can be done for the service rate also. The 
preliminaries are given in Section 2. Section 3 deals with the Bayesian estimators of change 
point  ,  and 1 under quasi prior for symmetric and asymmetric loss functions, viz. 
squared error loss function, precautionary loss function and general entropy loss function 
respectively. We have given a numerical example in Section 4 to illustrate the results. 
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2. Preliminaries 
Let us consider a /1/MM  queueing system with the mean arrival rate  and mean 

service time 1/ . Let X denote the number of customers in the system. So under steady 
state X has the probability mass function  

 ( | ) = (1 ) ,   = 0,1,2,....; = .xp x x    


  (1) 

The likelihood function corresponding to (1) is given by  

 =1( ) = (1 ) .

n
xi

n iL   


 (2) 

In the Bayesian approach, we further assume some prior knowledge about the queueing 
parameter  is available to the investigator from past experiences with the underlying 
queueing system. The prior knowledge can often be summarized in terms of the so-called 
prior densities on the parameter space of .  

Quasi-prior 

For the situation where the experimenter has no prior information about the parameter 
 , one may use the quasi density as given by  

 1( , ) ; > 0, > 0.cc c  


  (3) 

Hence, = 0c leads to a diffuse prior and =1c to a non-informative prior. 

Change-point problem 

Let us consider the case where the interarrival time distribution ( )A t is assumed to 
change after some unknown ,  where 1 n  . Thus 

 
1

1 exp( ), if  = 0,1,2,...,
( ) =

1 exp( ), if  = 1, 2,..., .i

t i
A t

t i n
 
  

 
    

 (4) 

Let 1 2 1( , ,..., , ..., )nx x x x x   be the number of customers present in the system for the 
time points nttt ,...,, 21 . So, for xxx ,...,, 21 , (1) can be written as  

 ( | ) = (1 ) ;  = 1,2,..., , =xip x i     


  

and, for nxx ,...,1  

 1
1 1 1 1( | ) = (1 ) ;  = 1,2,..., , = .xip x i     


  

Then, the likelihood function in (2) can be written as  
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 =1 = 1
1 1 1( , , ) = (1 ) (1 ) .

n
x xi i

ni iL



          
 

 (5) 

3. Bayesian Estimation 
Let  ,  and 1 are assumed to have independent priors of the following form:  

 1( ) = , 1 n
n

     (cf. Smith [26]); 

 1( ) , 0 < < 1;c  


  (6) 

 1 11
1

1( ) , 0 < < 1c  


  

where 0>, 1cc . 
The joint posterior density of  ,  and 1 is given by 

 )](),()(),([=),,( 11
1=1=

1 




xpxpk
n

ii




 

 
1

=1 = 1
1 1= (1 ) (1 ) ,

n
x c x ci i

ni ik



     
 

  
 

 

where k is a constant such that  

1 1

1 10 0
=1

( , , ) =1.
n

d d


        

11 1
=1 = 1

1 1 10 0
=1

1 = (1 ) (1 )

n
x c x ci in

ni i d d
k



  



     
 

   
 

   

1

=1 1

( 1) ( 1) ( 1) ( 1)= .
( 2) ( 2)

n
n

n

S c S c n
S c S c n

 

  

 
 





          
          

So,  

 

1
=1 = 1

1 1
1

1

=1 1

(1 ) (1 )( , , ) = ,
( 1) ( 1) ( 1) ( 1)

( 2) ( 2)

n
x c x ci i

ni i

n
n

n

S c S c n
S c S c n



  

 

  

      
 

 

 

 





 
          
        

 


 (7) 

where ii
xS 

 1=
= , i

n

in xS   1=
=

  

Therefore, the marginal posterior densities of  ,  and 1 are computed as:  

C  Singh

115



 11

1

0

1

0
),,(=)|(  ddx   

 

2)(
1)(1)(

2)(
1)(1)(

)(1)(1
=

1

1

1=

1
1

11

1

0

1

0






































ncS
ncS

cS
cS

dd

n

n
n

cSncS

 

 

1

1

1

=1 1

( 1) ( 1) ( 1) ( 1)
( 2) ( 2)= .
( 1) ( 1) ( 1) ( 1)

( 2) ( 2)

n

n
n

n

n

S c S c n
S c S c n
S c S c n

S c S c n

 

 

 

  

 
 

 
 









          
        
          
        

 (8) 

 11

1

0
1

),,(=)|(  dx
n

  

 

2)(
1)(1)(

2)(
1)(1)(

)(1)(1
=

1

1

1=

1
1

11

1

0
1







































ncS
ncS

cS
cS

d

n

n
n

cSncS
n

 

 

1

=1 1

1

=1 1

( 1) ( 1) (1 )
( 2)= .

( 1) ( 1) ( 1) ( 1)
( 2) ( 2)

n
S cn

n
n

n

n

S c n
S c n

S c S c n
S c S c n

 

 

 

  

  


 
 









     


    
          
        




 (9) 
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 (10) 

3.1. Squared error loss function (SELF) 
Let us consider the widely used squared error loss function (SELF) which is symmetric 

and is given by 
 2

1
ˆ ˆ( ) = ( ) ,B BL     (11) 
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where  and B̂ are parameter and estimator respectively. Minimizing ))ˆ(( 1 BLE  , i.e. 

solving 0=))ˆ(( 1




d
LdE B , we get  

 ˆ = ( | ).B E x   (12) 
Under the squared error loss function, the Bays estimators of  ,  and 1 are 

obtained as follows: 

)|(=ˆ xEBS   

 

1

=1 1

1

=1 1

( 1) ( 1) ( 1) ( 1)
( 2) ( 2)= .

( 1) ( 1) ( 1) ( 1)
( 2) ( 2)
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 (13) 

ˆ = ( | )BS E x   

2)(
1)(1)(

2)(
1)(1)(

)(1)(1
=

1

1

1=

1
1

11
11

0
1







































ncS
ncS

cS
cS

d

n

n
n

cSncS
n

 

1

=1 1

1

=1 1

( 2) ( 1) ( 1) ( 1)
( 3) ( 2)= .

( 1) ( 1) ( 1) ( 1)
( 2) ( 2)

n
n

n
n

n

n

S c S c n
S c S c n

S c S c n
S c S c n

 

  

 

  

 
 
 

 









          
        

          
        




 (14) 

Similarly,  

 

1

=1 1
1

1

=1 1
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( 2) ( 3)ˆ = .
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 (15) 

3.2. Precautionary loss function (PLF) 

Norstrom [23] introduced an alternative asymmetric loss function and also presented a 
general class of precautionary loss function as a special case. These loss functions approach 
infinity near the origin to prevent the underestimation and thus giving conservative 
estimators, especially when low arrival rates are being estimated which may lead to serious 
consequences. A very useful and simple asymmetric precautionary loss function (PLF) is 
given by 
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2

2

ˆ( )ˆ( ) = .ˆ
B

B
B

L  

  (16) 

Minimizing 2
ˆ( ( ))BE L  and solving 2

ˆ( ( )) = 0,BdE L
d



 we get 

 
1

2 2ˆ = [ ( | )] .B E x   (17) 
Under PLF, the Bays estimators of  ,  and 1 are obtained as follows: 

2
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 (18) 
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Similarly,  

 

1
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 (20) 

3.3. General entropy loss function (GELF) 

Sometimes, the use of symmetric loss function namely squared error loss function 
(SELF), was found inappropriate. Thus, large attention has been given to asymmetric loss 
function recently. Calabria and Pulcini [11] proposed a general entropy loss function defined 
by  
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 3

ˆ ˆˆ( ) = ( ) ( ) 1;  0.qB B
BL qln q 

 
    (21) 

This loss function is a generalization of the Entropy loss function used by many authors 
when the shape parameter q is taken equal to 1. It may be noted that when 0>q , a positive 
error ˆ( > )B  causes more serious consequences than a negative error, and vice versa. 

Minimizing 3
ˆ( ( ))BE L  and solving 3

ˆ( ( )) = 0,BdE L
d



 we get  

 
1

ˆ = [ ( | )] ,q q
B E x 


  (22) 

provided that ( | )qE x  exists and finite. It can be shown that, when 1= q , the Bayes 
estimator (22) coincides with the Bayes estimator under the squared error loss function. 
Similarly, when = 2q  the Bayes estimator (22) coincides with the Bayes estimator under 
precautionary loss function. 

Under GELF, the Bayes estimator of  ,  and 1 are obtained as follows: 
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 (24) 

Similarly,  
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 (25) 

4. Numerical Results 
We have generated 2000 random sample of sizes =10,20,50n for given 3= , 
4.5=1  and 5= , i.e. = 0.6 and 0.9=1 . Since 0.5)( E , which we commonly 

come across in queueing, we have chosen hyper-parameters of quasi prior =1.5c and 
1 = 2.c  For given change point  and sample size n , Bayes estimators of change point  , 

the parameters before change point ( ) and after change point 1( ) and their risks are 
computed under different loss functions which are tabulated. From the table it is seen that 
the estimators are very close to true value as desired. 

Table 1. Different Estimates of  ,   and 1  and their estimated risks.  

 Sample size   Estimator   Estimated 
value  

 Risk 

*n=10, 5=    BS    5.4370   1.2830  
  BS    0.6100   0.0984  
  BS1    0.9002   0.4967  
  BP    6.1362   2.8921  
  BP    0.6323   0.5037  
  BP1    0.9022   0.4967 
  3)=( qBE    6.6369   4.3274  
  BE    0.6525   3.9563  
  BE1    0.8906   1.3043  
  3)=(qBE    5.9982   1.6779  
  BE    0.6199   1.4316  
  BE1    0.8902   0.5052  

*n=20, 10=    BS    10.7400   1.8920  
  BS    0.6094   0.0977  
  BS1    0.9022   0.4968  
  BP    10.1528   2.1918  
  BP    0.6002   0.5116  
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  BP1    0.9251   3.9900  
  3)=( qBE    13.1324   6.9999  
  BE    0.5906   1.6700  
  BE1    0.9245   2.9419  
  3)=(qBE    12.5766   1.7269  
  BE    0.6037   1.4167  
  BE1    0.8798   2.4945  

*n=50, 25=    BS    24.8170   1.7270  
  BS    0.6238   0.1339  
  BS1    0.9027   0.6322  
  BP    24.6457   2.3463  
  BP    0.6047   0.6427  
  BP1    0.9012   1.7802  
  3)=( qBE    23.3495   3.5503  
  BE    0.6251   1.7659  
  BE1    0.9100   1.6543  
  3)=(qBE    23.4148   1.7918  
  BE    0.6091   1.9302  
  BE1    0.9029   1.0952  
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