
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The retrial queueing model has wide applications in practice such as telephone 

switching systems, telecommunication networks, computer and communication systems, 

call centers, and others. In computer networks, for instance, a packet can be retransmitted 

later by a retransmission mechanism if the packet is lost. For a literature review on retrial 

systems and their applications, see Falin [15], Kulkarni and Liang [23], Falin and 

Templeton [16], Artalejo and Gomez-Corral [3], Artalejo [1]. 

In the retrial systems, the inter-retrial times can be modeled according to different 

disciplines depending on each particular situation. In telephone networks, each source in 

   *Corresponding author
Email : jauchuan@nutc.edu.tw

Retrial System with Three Retrial Policies Subject 
to Repairable Starting Failures

Tzu-Hsin Liu1,  Zhe-George Zhang2,3,4 and Jau-Chuan Ke1,*

 1Department of Applied Statistics
National Taichung University of Science and Technology, Taichung 404, Taiwan 

2Department of Decision Sciences
Western Washington University, Bellingham, WA 98225, USA

3Beedie School of Business
Simon Fraser University, Burnaby, BC, Canada, V5A 1S6

4School of Management
Lanzhou University, Lanzhou, Gansu, 730000, P. R. China

(Received April 2019; accepted November 2019)

Abstract: Motivated by the computer and telecommunication networks, this study deals 
with a multi-server retrial system with customer geometric loss (balking is possible for each 
service request attempt) and feedback. Moreover, the server may fail when it begins preparing 
to serve the customers in the startup period. An arriving customer who finds all servers are 
busy or broken either joins the retrial orbit or balks. If the customer gets the service, then after 
the service, he may either leave the system or enter the orbit for another service. The system is 
investigated as a quasi- birth-and-death process and interesting system performance measures 
are calculated with the long-term distribution. The optimum parameter settings which would 
minimize the cost function are discussed numerically. Some numerical experiments are 
presented to compare three retrial policies in terms of the major performance measures. It 
is demonstrated that our study can be utilized for not only evaluating performance but also 
generating some counter-intuitive results about system behavior.

Keywords: Cost, feedback, geometric loss, retrial queue, starting failure.

Queueing Models and 
Service Management
Vol. 3, No. 1, page 89-109, 2020

QMSM
C  PU 2018

89



orbit repeats its call after an exponentially distributed time with parameter σ . This type 

of retrial policy is called the classical retrial policy in which the total retrial rate is nσ  

when the orbit queue size is 0n ≥ and was studied by Krishna Kumar et al. [21], Purohit 

and Rani [31], Tuan [37], and Choudhury and Deka [12]. In some practical applications 

such as communication networks, the retrial of customers may be controlled, and it seems 

that the retrial rate does not depend on the number of customers in the orbit. Hence, 

Fayolle [17] introduced another type of retrial policy called the constant retrial policy. 

Under such policy, the time between two successive attempts is independent of the number 

of customers in the orbit, i.e., the retrial rate is ( )01 nδ ν− , where
ij

δ denotes Kronecker 

delta. The constant retrial policy was used to describe the ALOHA protocol in 

communication systems, local area networks, communication protocols, mobile systems 

(Fayolle [17], Choi et al. [11], Shikata et al. [34]), and so on. Artalejo and Gomez-Corral 

[2] combined both policies by defining a linear retrial policy with rate ( )01 n nδ ν σ− + . 

Artalejo and Gomez-Corall [3] applied this policy in several computer and 

telecommunication networks. This paper focuses on the comparison of three retrial 

policies in a multi-server system involving feedback customers with possible server 

starting failure. 

Retrial queueing systems with feedbacks can model many real-life situations such as 

multiple access telecommunication systems where messages turned out as errors are sent 

again and call center in which customers may call again if their problems are not 

completely solved after the service. The first work on the feedback retrial system is due to 

Takacs [36]. An M/G/1 retrial system with feedback was investigated by Choi and 

Kulkarni [10]. Choi et al. [9] studied an M/M/1 and M/M/2 retrial system including 

customer geometric loss and feedback. They derived the queue size distribution by the 

confluent hypergeometric equation and the method of series solution. Several extensions 

of the feedback retrial queue have been made by Atencia and Moreno [5], Lee [25], 

Krishna Kumar and Raja [20], Mokkadis et al. [28], Ke and Chang [18], Krishna Kumar et 

al. [21], Do [13], Lin and Ke [27], Yang et al. [40] and Chang et al. [7].  

In many practical applications such as telecommunication networks and computer 

manufacturing systems, retrial queues with server subject to breakdown and repair are 

often encountered. Studying the retrial queueing system with server breakdowns and 

repairs is not only important for theoretical research but also necessary for practical 

applications because server breakdowns and the limitation of repair capacity can severely 

deteriorate system performance. The existing literature on retrial systems with server 

breakdowns, can refer to Kulkarni and Choi [22], Yang and Li [42], Wang et al. [39], 

Wang and Zhou [38], Sumitha and Udaya Chandrika [35], Efrosinin and Sztrik [14], 

Chang and Wang [8], and Zirem et al. [43]. Li et al. [26] summarized that there are four 

important categories of important results concerning the queues with server subject to 

C  Liu, Zhang, Ke

90



breakdowns and repairs during the service. Here we consider the server is subject to 

starting failures that is different from the four classes indicated in Li et al. [26]. We 

assume that the arrival customer has to turn the server on when the server is idle on arrival. 

If the server is started successfully, the customer gets service immediately. Otherwise, the 

repair for the server commences immediately, and the customer must leave and make a 

retrial later. Assume that the server is reliable during the service. Such systems with the 

server subject to starting failures have been analyzed by Yang and Li [41], Krishna Kumar 

et al. [24], Mokaddis et al. [28], Atencia et al. [4], Ke and Chang [19], Sumitha and Udaya 

Chandrika [35], Rajadurai et al. [32], Ayyappan and Sathiya [6]. 

Motivated by the above situations, we study a multi-server retrial system with 

customer geometric loss and Bernoulli feedback, in which the server is subject to starting 

failure. In the proposed model, the server may meet an unpredictable breakdown subject to 

starting failure when a customer requires his service. The model analyzed in this paper can 

be a very suitable tool for modeling a computer system in which a message is transmitted 

from a source to a destination through several devices such as computers, routers, and 

switches. Analytical results could provide very useful and helpful management 

information for decision makers and practitioners with to design management policy. 

The remainder of the paper is organized as follows. We first in Section 2 describe the 

system and give basic assumptions. Then, we construct a quasi-birth-and-death model for 

the system and propose an efficient algorithm for the long-term probability vector for 

queue size in Section 3. After that, we compute system performance measures based on 

the long-term distribution in Section 4. Numerical examples are implemented to illustrate 

the use of the algorithms. In Section 5, we construct a cost model for analyzing various 

retrial policies and searching for the optimum patterns. Finally, we conclude this paper in 

Section 6 with a brief summary. 

2. System Description 

In this study, we deal with a multi-server retrial system with Bernoulli feedback and 

loss under three retrial policies (mentioned earlier), where the servers may fail when it 

starts to prepare providing service for customers in the startup period. To analyze this 

retrial system, we make some assumptions given by: 

1. The primary customers arrive in accordance with a Poisson process with rate λ . An 

arriving customer finding one or more servers available obtains service immediately; 

otherwise (finding all servers busy or broken), leaves the system with probability 

( )1b b= −  or joins the orbit with probability b . 
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2. The system facility is comprised of m identical servers and service time of each server 

is exponentially distributed with parameter µ . After the customer is served, he may 

either leave the system with probability θ or join the retrial orbit for another service 

with probability ( )1θ θ= − .  

3. Each server can serve only one customer at a time. Idle servers are shut down. If one 

or more servers are idle, an arriving customer will make one idle server to start up. The 

start-up time is assumed to be negligible. Moreover, the server may fail during the 

start-up with probability ( )1p p= − . If the server is started successfully, the customer 

gets service immediately. Otherwise, the repair starts immediately, and the customer 

must leave for the orbit and make a retrial later. The repair time of the failed server is 

assumed to be exponentially distributed with parameter β . 

4. Customers in orbit make repeated attempts to get service. The length of the time 

interval between two consecutive attempts is exponentially distributed with linear 

intensity ( )01
j j

jσ δ ν σ= − + , where j is the number of customers in the orbit and 
ij

δ  

is the Kronecker’s delta. If 0σ = and 0ν > , we obtain the constant retrial policy 

with parameter ν . Alternatively, if 0ν = and 0σ > , we get the case of classical 

retrial policy with parameter σ . The orbit customer who makes a service request and 

sees all m servers busy, may either leave the system with probability ( )1b b= − or 

back/enter the orbit again with probability b  (this leads to geometric loss).  

5. The arrival process, service process, retrial process and repair process are all assumed 

to be independent. 

3. Mathematical Model 

 We define ( ) ( ) ( ){ }1 2 3, , ; 0N t N t N t t ≥  as the state of the system at time t, where 

( )1N t  denotes the number of busy servers, ( )2N t represents the number of customers in 

the orbit, and ( )3N t is the number of failed servers. Due to the exponentially distributed 

random variables in the model, the stochastic process is a three-dimensional continuous- 

time Markov Chain with state space ( ){ }, , ;0 , 0,0S i j k i m j k m i= ≤ ≤ ≥ ≤ ≤ − . Let 

( ) ( ) ( ){ }, 1 2 3lim , , ,i

j k
t

P P N t i N t j N t k
→∞

= = = =   

where 0 i k m≤ + ≤ and 0j ≥ be the long-term probability of the retrial queueing system.  

 By the lexicographical sequence for the states, the infinitesimal generator Q  of the 

process describing the M/M/m retrial queue with Bernoulli feedback, loss and starting 

failures is of the form 
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0

1 1

2 2

1 1

1 1

n n

n n

n n

− −

+ +

 
 
 
 
 
 =  
 
 
 
 
  

A B

C A B

C A B

Q
C A B

C A B

C A B

⋱ ⋱ ⋱

⋱ ⋱ ⋱

, 

where all the blocks are square matrices of order ( ) ( )1 2 2m m+ + . 

The matrix ( )1j j ≥C is defined as 

          

0

1

1

j

m

m

−

 
 
 
 =
 
 
  

c

c

C

c

c

⋱ ,  

where sub-matrices 
i

c  are ( ) ( )1 1m i m i+ − × + − square matrices with elements 

[ ]

[ ]

1 , 1

, 1 ,                      1

0                                                otherwise.

i j

i j

m i m i b

k k p k m i

σ

σ

 + − + − =


+ = ≤ ≤ −



c

c   

Similarly, the matrix B is partitioned as 

     

0 0

1 1

1 1

,

m m

m

− −

 
 
 

=  
 
 
  

b d

b d

B

b d

b

⋱ ⋱   

where sub-matrices ( )0i i m≤ ≤b are ( ) ( )1 1m i m i+ − × + − square matrices with 

elements 
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[ ]

[ ]

1 , 1

1, ,   1

0                                       otherwise.

i

i

m i m i b

k k k k m i

λ

θµ

 + − + − =


+ = ≤ ≤ −



b

b   

and sub-matrices ( )0 1i i m≤ ≤ −d are ( ) ( )1m i m i+ − × − square matrices with elements 

[ ], ,1

0                     otherwise.

i
k k p k m iλ = ≤ ≤ −




d
  

The diagonal entries ( )0j j ≥A are shown as 

       

0 0

1 1

1

2 2

2

1 1

1

,

j j

j j

j j

j

m m

m j j

m

m j

− −

−

 
 
 
 

=  
 
 
 
  

Y X

Z Y X

Z Y X
A

Z Y X

Z Y

⋱ ⋱ ⋱
  

where sub-matrices ( )0i

j i m≤ ≤Y are ( ) ( )1 1m i m i+ − × + − square matrices with 

elements 

      

[ ] ( )

[ ] ( )

[ ]

[ ]

1 , 1 ,

, 1 ,                               1

1, ,                                                             1

, 1 ,            

i

j j

i

j j

i

j

i

j

m i m i b m i i b

k k k i k m i

k k k k m i

k k p

λ µ β σ

λ µ β σ

θµ

λ

 + − + − = − + − + + 
 = − + − + + ≤ ≤ − 

+ = ≤ ≤ −

+ =

Y

Y

Y

Y                                                    1 .k m i








≤ ≤ −

 

The sub-matrices ( )0 1i

j i m≤ ≤ −X and ( )1i i m≤ ≤Z are matrices of sizes 

( ) ( )1m i m i+ − × −  and ( ) ( )1m i m i− × + − , respectively. The elements are described as 

      
[ , ] ,           1

0                                  otherwise

i

j j
k k p k m iσ = ≤ ≤ −




X
  

and 

         
[ ], ,1

0                    otherwise.

i
k k i k m iβ = ≤ ≤ −




Z
 

To derive the stability condition, we apply the Neuts-Rao truncation method (see Neuts 
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and Rao, [30]) and assume that for a specified value (sufficiently large) M for all n M≥ , 

the retrial rate remain constant at ( )01 n Mδ ν σ− + . We therefore assume that 

,
n M

=A A  for n M≥  

,
n M

=C C  for n M≥ . 

It is observed that the matrix
M M

= + +G B A C is the infinitesimal generator. Let 
0 1 0 1 0

0 0 0 1 1, , , , , , , ,m m

m
x x x x x x− =  x … … …  is ( ) ( )1 2 2m m+ + elements row vector of the 

long-term probability G . Solving the equation systems of =xG 0 and 1=xe , we obtain 

( ) 0

0
! !

i ki k

Mi

k i k

p p
x x

i k

λ σ

µ β

+
+

= , 0 i k m≤ + ≤  

where 
( )

1

0

0

0 0 ! !

i ki km m k
M

i k
k i

p p
x

i k

λ σ

µ β

−+
−

= =

 +
=  
  
∑∑ . 

It is well known (Neuts [29], Theorem 3.1.1) that the standard drift condition 

M
<xBe xC e  is a sufficient condition for the stable retrial system. After some algebraic 

manipulation, the stability condition for our model can be expressed as  

( )( )
( ) ( )!

! !

i k

M M

M

i k m

p pm
p i

i k

λ σ λ σ
λ λ σ θµ

µ β+ ≤

+ +   
− + + <   

   
∑  

( )( )
( ) ( )

1

m

M M

M

p p
p b

λ σ λ σ
λ σ

µ β

+ + 
− − + + 

 
. 

Because of the many parameters involved, it is difficult to have intuitive explanations 

behind the stability condition. Hence, we only attempt to give an explanation of the 

stability condition of a single server orbit queue with customer Bernoulli feedback, and 

geometric loss in which the server is subject to starting failure. The sufficient stability 

condition of a single server orbit queue with starting failures, feedback, and geometric loss 

is 

1M M M

M

b b b b
p p

λ σ λ σ σ
θ

µ β λ σ

   − −
+ + + <   

+   
. 

According to the mean drift 1M M M
j

M

b b b b
p p

λ σ λ σ σ
ϕ θ

µ β λ σ

   − −
= + + + −   

+   
, 

for j ≥ 1, we could draw the following reasonable conclusions. The term 

M
b b

p
λ σ

θ
µ

 −
+ 

 
 contains components on successfully started service with probability 
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p by any customer: the served customer joining the orbit with probability θ  and arrivals 

during the busy period of the server (
M

b bλ σ− ). The term 1 Mb b
p

λ σ

β

 −
+ 

 
also 

contains two components when the service fails during the start-up with probability p : 

the arrivals during the breakdown (
M

b bλ σ− ) and the approached customer (resulting in 

breakdown of server) joining the orbit. In addition, / ( )
M M

σ λ σ+ gives the expected 

number of orbiting customers who enter service successfully, given that the previous 

service time leaves j customers in the orbit. We require, for stability, that customers have 

to arrive during service time and repair time more slowly than orbiting customers seeking 

service, at the commencement of service. 

Under this stability condition, the long-term probability vector Π of Q exists. The 

long-term probability vector Π partitioned as [ ]0 1 2, , , ,=Π Π Π Π … where the sub-vectors 
0 1 0 1 1 0 1 0

,0 ,0 ,0 ,1 ,1 ,1 , 1 , 1 ,, , , , , , , , , , ,m m

j j j j j j j j m j m j m
P P P P P P P P P−

− −
 =  Π … … … , is given by 

( )
1

0 1 1 0 1 1,
−

= − =Π Π C A Π ψ  

( )
1

1 1 1j j j j j j j

−

− − −
 = − + = Π Π C ψ B A Π ψ , 2,3, ,j M= …  

,
M M M M M M

+ + =Π ψ B Π A Π RC 0  

( )
1

0 1

1,
jM

j M i

j j i M

∞
−

= = =

 
= + − = 

 
∑ ∑∏Π e Π ψ I R e  

where e is a column vector of suitable size with all elements equal to 1, I is an identity 

matrix and R is the unique non-negative solution with spectral radius less than one of the 

equation 2

M M
+ + =R C RA B 0 . In the following, we present a solution procedure to 

compute the long-term probability vectors. 

Algorithm for computing the steady-state probability vectors 

INPUT ,m ,M ,B ( )0j j M≤ ≤A , ( )1j j M≤ ≤C , ,R e  and I  

OUTPUT approximate solution 0 1 2, , ,Π Π Π …  

Step 1: Set ( )
1

1 1 0

−
= −ψ C A ; 

Step 2: For 2i =  to ,M  set ( )
1

1 1i i i i

−

− −= − +  ψ C ψ B A ; 

Step 3: For 1i =  to ,M  set 
j

j i

i N=

= ∏Ψ ψ ; 

Step 4: Solve
M M M M M M

+ + =Π ψ B Π A Π RC 0 and ( )
1

1

1
M

M j

j

−

=

 
+ − = 

 
∑Π Ψ I R e ; 
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Step 5: For 1i =  to M , set 1i M i+=Π Π Ψ , and  

for 1i M= +  to … , set 1i i+ =Π Π R ; 

Step 6: OUTPUT. 

4. System Performance Measures 

  The major system performance measure of such a retrial queue system are listed as 

follows: 

    [ ]E B ≡  expected number of busy servers; 

    [ ]E I ≡  expected number of idle servers; 

    [ ]E D ≡  expected number of broken servers; 

 *

1σ ≡  overall rate of retrials; 
*

2σ ≡  successful rate of retrials; 

    F ≡  fraction of retrials that are successful; 

L ≡  expected number of customers in orbit;   

c
L ≡  expected number of customers in orbit when all servers are busy or broken. 

Using the long-term distribution, we obtain the following expressions: 

 [ ] ( )
1

1 1 1

0 0

M

j j M

j j

E B
∞

−

= =

= = + −∑ ∑Π f Π f Π R I R f ; 

      [ ] ( )
1

2 2 2

0 0

M

j j M

j j

E I
∞

−

= =

= = + −∑ ∑Π f Π f Π R I R f ; 

 [ ] ( )
1

3 3

0

M

j M

j

E D
−

=

= + −∑Π f Π R I R f ; 

 *

1 , ,

1 1

i i

j j k j j k

j i k m j i k m

P b Pσ σ σ
∞ ∞

= + < = + =

= +∑ ∑ ∑ ∑  

( )4 4

1 1

j j j j

j j

bσ σ
∞ ∞

= =

= − +∑ ∑Π e f Π f  

( ) ( ) ( )
1

4 4

1

M

j j M M

j

σ σ
−

=

= − + − −∑ Π e f Π R I R e f  

      ( )
1

4 4

0

M

j j M M

j

b bσ σ
−

=

+ + −∑ Π f Π R I R f ; 
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 *

2 ,

1

i

j j k

j i k m

p Pσ σ
∞

= + <

=∑ ∑ ( )4

1

j j

j

pσ
∞

=

= −∑ Π e f  

( ) ( ) ( )
1

4 4

1

M

j j M M

j

p pσ σ
−

=

= − + − −∑ Π e f Π R I R e f ; 

     
*

2

*

1

F
σ

σ
= ; 

( ) ( )
1 2

0 0

M

j j M M

j j

L j j M
∞

− −

= =

= = + − + −∑ ∑Π e Π e Π R I R e Π R I R e ; 

     ,

0

i

c j k

j i k m

L j P
∞

= + =

=∑ ∑ 4

0

j

j

j
∞

=

=∑ Π f  

( ) ( )
1 2

4 4 4

0

M

j M M

j

j M
− −

=

= + − + −∑ Π f Π R I R f Π R I R f , 

where  

1

# 2# 1 #

0,1, , , 0,1, , 1, , 0,1, 0

T

m m

m m
== + =

 
= − 
  

f … … …  , 

2

# 2# 1 #

, 1, ,0, 1, 2, ,0, , 1,0, 0

T

m m

m m m m
== + =

 
= − − − 
  

f … … …  , 

3

# 1 # # 2

0,0, ,0, 1,1, ,1, , 1, 1,

T

m m

m m m m

= + = =

 
= − − 

  
f … … …    and 

4

# 2# 1 #

0,0, ,0,1, 0,0, ,0,1, , 0,1, 1

T

m m == + =

 
=  
  

f … … …  . 

 To explore the effects of the major system parameters on the expected number of 

customers in the orbit (a congestion measure), we carry out the numerical analysis based 

on the following cases with different values of m  (the number of servers): 

Case 1: 10µ = , 0.9θ = , 0.75p = , 0.8b = , 1σ = , 1.5ν = , 6β = , 20M = , 

change the values of λ  from 0.01 to 10. 

Case 2: 5λ = , 0.9θ = , 0.75p = , 0.8b = , 1σ = , 1.5ν = , 6β = , 20M = , 

change the values of µ  from 5 to 20. 
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Case 3: 5λ = , 10µ = , 0.9θ = , 0.75p = , 0.8b = , 1σ = , 6β = , 20M = , 

change the values of ν  from 0.1 to 5. 

Case 4: 5λ = , 10µ = , 0.9θ = , 0.75p = , 0.8b = , 1.5ν = , 6β = , 20M = , 

change the values of σ  from 1 to 20. 

Case 5: 5λ = , 10µ = , 0.3θ = , 0.75p = , 1σ = , 1.5ν = , 6β = , 20M = , 

change the values of b  from 0 to 0.8. 

Case 6: 5λ = , 10µ = , 0.9θ = , 0.75p = , 0.8b = , 1σ = , 1.5ν = , 20M = , 

change the values of β  from 0.5 to 20. 

Case 7: 5λ = , 10µ = , 0.9θ = , 0.5b = , 1σ = , 1.5ν = , 6β = , 20M = , 

change the values of p  from 0.1 to 1. 

Case 8: 5λ = , 10µ = , 0.75p = , 0.5b = , 1σ = , 1.5ν = , 6β = , 20M = , 

change the values of θ  from 0.1 to 1. 

The results are illustrated in Figure 1 for Cases 1-8, respectively. Each case focuses 

on each system parameter. Although the general patterns of these relations are intuitive, 

our algorithms based on the QBD model offer a powerful tool for evaluating the system 

performance quantitatively. It reveals from Figure 1 that L increases as λ or b increases, 

and decreases as the other parameters (µ, ν, σ, β, p, θ) increases. In particular, we find that 

the effect of each parameter on the L (congestion measure) depends on the number of 

servers. For example, for some parameters such as ν or σ (retrial rate), the impact on L 

remains almost the same for c ≥ 3 as illustrated in Cases 3 and 4, respectively, in Figure 1. 

However, the impact on L of other system parameters such as b (balking rate), p (server 

starting failure rate), and θ (leaving probability after service) may depend on the number 

of servers significantly as shown in Cases 5, 7, and 8, respectively, in Figure 1. These 

observations offer important insights for practitioners in designing the system. Another 

interesting finding is that there exists an intersection in Case 5 of Figure 1. This implies 

that when the balking rate is too high, the fewer servers may lead to smaller number of 

customers in the orbit, a little counter-intuitive result. This mainly because that balking 

does not take time but reduce the number of customers in the orbit. Of course, such a high 

balking rate may not be reasonable in a practical system. 
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L L
Case 1. 0.01 10λ≤ ≤  Case 2. 5 20µ≤ ≤  

L L

Case 3. 0.1 10ν≤ ≤  Case 4. 1 10σ≤ ≤  

L L

Case 5. 0 0.8b≤ ≤  Case 6. 0.5 20β≤ ≤  

C  Liu, Zhang, Ke

100



L
Case 7. 0.1 1p≤ ≤  Case 8. 0.1 1θ≤ ≤  

Figure 1. The expected number of customers in the orbit versus various system 

parameters. 

In Figure 2, we compare classical retrial policy, constant retrial policy, and linear 

retrial policy by considering the following cases. 

Case 9: 10µ = , 0.9θ = , 0.7p = , 0.5b = , 6β = , 3m = , 20M = , change the 

values of λ  from 0.01 to 5. 

Case 10: 5λ = , 0.9θ = , 0.7p = , 0.5b = , 6β = , 3m = , 20M = , change the 

values of µ  from 5 to 20. 

Case 11: 5λ = , 10µ = , 0.9θ = , 0.7p = , 6β = , 3m = , 20M = , change the 

values of b  from 0 to 1. 

Case 12: 5λ = , 10µ = , 0.9θ = , 0.7p = , 0.5b = , 3m = , 20M = , change the 

values of β  from 1 to 10. 

Case 13: 3λ = , 10µ = , 0.9p = , 0.5b = , 6β = , 3m = , 20M = , change the 

values of θ  from 0.1 to 1. 

Case 14: 3λ = , 10µ = , 0.95θ = , 0.5b = , 6β = , 3m = , 20M = , change the 

values of p  from 0.1 to 1. 

It is observed that linear retrial policy constant retrial policy classical retrial policyL L L< < holds when λ , µ , 

b  or β varies as shown in Cases 9 to 12 of Figure 2. This is intuitive as the linear retrial 

policy is more flexible (more general) than the other two policies. However, again the L 

curves against θ and p shown in Cases 13 and 14 intersect, indicating that the 

dominating relation linear retrial policy constant retrial policy classical retrial policyL L L< < fails. This is also a 

useful insight for practitioners in selecting a retrial policy for a given feedback rate or 

server starting failure rate. 
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Figure 2. The effect of the retrial policy and different system parameters on L . 
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5. Optimization Analysis for Three Retrial Policies 

 The long-term distribution obtained can be used to address the optimization issue. 

For this purpose, we construct an expected cost function per unit time in which the 

number of servers, the mean service rate, and the mean repair rate are decision variables. 

Such a cost function is based on the cost parameters defined as follows: 

 
h

c ≡ holding cost per unit time per customer present in orbit; 

 
d

c ≡ cost per unit time per failed server; 

 
l

c ≡ cost per unit time per customer loss from orbit; 

 
f

c ≡ cost per unit time of each available server; 

 
s

c ≡ cost per customer served by a mean service rate µ ; 

 
r

c ≡ cost per failed server repaired by a mean repair rate β . 

Using these cost elements, the expected cost function ( ), ,F m µ β per customer per 

unit time is given by 

( ) [ ] [ ], , h d l c f s rF m c L c E D c bE L c m c cµ β µ β= + + + + +  

Because the expected cost function is highly complex and nonlinear on ( ), ,m µ β , 

we apply the probabilistic global search Lausanne (PGSL) method developed by Raphael 

and Smith [33] to obtain the optimum value of ( ), ,m µ β . To compare three retrial 

policies, we use the following cost parameters: 

      300
h

c = /customer/unit time;    20
d

c = /server/unit time; 

      15
l

c = /customers/unit time;  30
f

c = /server/unit time; 

      8
s

c = /customer;       5
r

c = /failed server. 

Given other system parameters, we observe from Tables 1-4 that (i) *m increases in 

λ  or b but decreases in θ or p ; and (ii) for a given *
m , ( )* *,µ β increase in λ or b  

and ( )* *,µ β decrease in θ or p . In addition, although these relations are intuitive and 

as expected, our analysis reveals the quantitative measures of operating costs under three 

different policies. These quantified measures help decision makers in deciding whether or 

not a change in retrial policy is beneficial (performing cost and benefit analysis). 

In addition, it is also observed that the minimum expected cost follows the cost order 

linear retrial policy < constant retrial policy < classical retrial policy due to the flexibility 

of the linear retrial policy. 
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Table 1. The optimum value ( )* * *, ,m µ β and the minimum expected cost for various 

value of λ and different retrial policy ( 0.6θ = , 0.7p = , 0.8b = , 20M = ). 

 linear retrial policy constant retrial policy classical retrial policy 

λ  ( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

1 (2,2.63,3.38) 192.558 (2,3.56,4.32) 235.031 (3,2.83,3.46) 426.503 

1.5 (3,3.11,4.02) 261.547 (3,3.56,4.32) 235.031 (3,4.20,4.73) 589.725 

2 (3,4.28,5.16) 325.436 (4,4.41,5.09) 461.556 (4,4.01,4.68) 751.301 

2.5 (3,5.51,6.30) 394.848 (4,6.14,6.51) 639.040 (4,5.00,5.57) 906.240 

3 (4,5.09,6.00) 464.145 (5,6.21,6.44) 927.613 (4,5.99,6.45) 1061.031 

3.5 (4,6.05,6.85) 538.833 (6,6.49,6.55) 1531.722 (4,6.98,7.31) 1215.722 

4 (4,7.04,7.71) 619.936 (7,7.70,7.03) 3762.429 (5,6.06,6.66) 1366.365 

Table 2. The optimum value ( )* * *, ,m µ β and the minimum expected cost for various 

value of θ and different retrial policy ( 3λ = , 0.95p = , 0.8b = , 20M = ). 

 linear retrial policy constant retrial policy classical retrial policy 

θ  
( )* * *, ,m µ β

 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

0.5 (3,7.02,2.70) 371.417 (4,7.41,2.71) 588.481 (4,6.17,2.37) 866.437 

0.6 (3,5.98,2.36) 287.691 (4,5.52,2.18) 376.361 (4,5.35,2.10) 645.007 

0.7 (3,5.21,2.09) 234.358 (3,6.27,2.46) 279.448 (4,4.72,1.89) 486.230 

0.8 (3,4.62,1.87) 197.580 (3,5.29,2.14) 221.070 (3,6.05,2.28) 364.177 

0.9 (3,4.15,1.70) 170.739 (3,4.60,1.89) 182.875 (3,5.49,2.09) 268.651 
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Table 3. The optimum value ( )* * *, ,m µ β  and the minimum expected cost for various 

value of p  and different retrial policy ( 3λ = , 0.9θ = , 0.8b = , 20M = ). 

 linear retrial policy constant retrial policy classical retrial policy 

p  ( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

0.5 (4,3.94,7.38) 425.360 (5,4.34,7.48) 719.633 (4,4.77,7.95) 963.945 

0.6 (3,4.98,7.33) 334.530 (4,4.73,6.89) 443.534 (4,4.59,6.39) 727.863 

0.7 (3,4.73,5.70) 272.039 (4,4.16,5.13) 327.376 (4,4.39,5.02) 556.610 

0.8 (3,4.51,4.17) 226.144 (3,5.24,4.77) 257.319 (4,4.19,3.72) 425.640 

0.9 (3,4.29,2.60) 188.683 (3,4.82,2.93) 205.642 (3,5.67,3.14) 317.817 

 

Table 4. The optimum value ( )* * *, ,m µ β  and the minimum expected cost for various 

value of b  and different retrial policy ( 3λ = , 0.9θ = , 0.95p = , 20M = ). 

 linear retrial policy constant retrial policy classical retrial policy 

b  
( )* * *, ,m µ β

 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

( )* * *, ,m µ β
 

( )* * *, ,F m µ β
 

0.5 (2,3.46,1.34) 143.823 (2,4.32,1.68) 161.207 (3,4.28,1.65) 254.489 

0.6 (2,4.41,1.69) 155.109 (3,3.70,1.53) 172.837 (3,4.74,1.81) 259.857 

0.7 (2,5.32,2.06) 165.812 (3,4.17,1.71) 178.069 (3,5.13,1.96) 264.507 

0.8 (3,4.15,1.70) 170.739 (3,4.60,1.89) 182.875 (3,5.49,2.09) 268.651 

0.9 (3,4.59,1.89) 175.433 (3,5.00,2.07) 187.343 (3,5.81,2.22) 272.418 

6. Conclusions 

This paper investigates a multi-server retrial queue with geometric loss and feedback, 

and unreliable servers during start-up period. The sufficient condition for the stability of 

this system is obtained for the QBD process. For a stable system, we develop the major 

long-term performance measures to evaluate such a stochastic service system. The system 

Queueing Models and Service Management

105



can be made more economical at the optimum number of servers, the optimum service rate, 

and the optimum repair rate simultaneously to minimize the expected cost. Finally, we 

compare the linear retrial policy, the constant retrial policy, and the classical retrial policy 

by numerical analysis. Besides the quantified performance measures, we also observe 

some counter- intuitive system behaviors. The results will benefit the practitioners in 

telecommunication systems and computer networks or other service systems that fit the 

model. 
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