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Abstract: This paper investigates the GeoX/G/1 queue with single vacation in an early
arrival system. The time between arrival batches follows a geometric distribution, while the
service and vacation durations are expressed as integral multiples of a slot duration and can
follow arbitrary distributions. This study focuses on analyzing the system length distribu-
tions at different time epochs, the waiting time distribution for a random customer within
a batch, and performing a cost analysis using the theory of difference equations and the
supplementary variable technique. This method has an advantage over traditional queueing
analysis techniques, as it eliminates the need to compute the transition probability matrix for
the embedded system length process. We evaluate key performance metrics and demonstrate
the computational process through numerical examples.
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1. Introduction
Queueing theory is a mathematical approach used to study the behavior of waiting lines

or queues in various systems. Discrete-time queues are essential for studying systems where
events occur at specific intervals, whereas continuous-time queues allow events to occur
at any time. The discrete-time models are particularly useful in modern digital and cyber-
physical systems, where operations are naturally segmented into time slots. These models
are essential for modern real-world applications, such as in telecommunications systems,
where they are used to provide efficient and smooth data transfer by optimizing data packet
scheduling in 5G networks and internet routers. Computer networks depend on this to mini-
mize delays in multimedia services (such as streaming data, music, and video) and to dynam-
ically allocate bandwidth during periods of high usage. Queueing models are also used in
service systems, such as call centers and hospitals, to balance staff availability with customer
demand for reducing wait times and improving efficiency. These models are very helpful
to digital communication systems because they divide time into intervals, which makes it
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possible to handle data packets efficiently and assist in controlling traffic. Power savings in
mobile communications are becoming more and more crucial due to the quick rise in data
traffic and the small battery capacity of mobile devices. User equipment (UE) uses a lot
more power as communication services become more complicated, and battery technology
has not kept up with the rate of improvements. One effective strategy to address this chal-
lenge is enabling sleep modes for UEs, allowing devices to enter low-power states when
idle. This idea is closely related to vacation models in queueing theory, which have been
widely used to study the performance of wireless networks under varying traffic conditions.
More information about it can be found in Jung et al. [13] and Jayadi et al. [11]. To better
understand traffic behavior and improve system efficiency, researchers utilize discrete-time
queues to evaluate scenarios involving simultaneous arrivals and departures.

In most queueing models, the server remains idle when it has finished servicing the ex-
isting customers in the system and waits for the next customers to arrive. However, once
the service is completed and the queue is empty, the server may temporarily leave the ser-
vice area to focus on another task, which is called the server’s vacation. When the server
returns from a vacation and observes one or more customers waiting, it serves them until the
system is empty, after which it departs for another vacation. When the server returns and
finds no customers waiting, it stays idle until one arrives; on the other hand, it immediately
begins another vacation and continues this cycle until a customer arrives. Queueing theory
describes the first scenario as a single vacation policy and the second as a multiple vacation
policy. Classical queueing theory assumes that the server is always available to serve cus-
tomers. However, this is only sometimes the case in real-life scenarios. A more realistic
scenario is when the server has to take breaks for various reasons, such as maintenance, re-
pairs, or controlling traffic signals. Researchers can design and operate more efficient and
effective systems in various application domains by analyzing and understanding the behav-
ior of queueing systems with vacations. An early arrival system (EAS) in a discrete-time
queue is necessary to investigate the systems so that packets (information) are sent in the
same slot whenever they arrive.

The subject of vacation queues has appeared in various forms in the literature over the
past few decades. A finite buffer M/G/1 type queueing system with exhaustive service
under both single and multiple vacation policies was studied by Kempa [16]. Many re-
searchers became interested in queueing models with vacation phenomena, including Tian
and Zhang [28], Madan and Choudhury [21], Lv et al. [20], Karan et al. [15], and Nandy and
Pradhan [23], as well as the references therein. Takagi [26] examined the model using the
embedded Markov chain technique and analyzed finite and infinite buffer queues (including
batch arrivals) with various vacation policies. Wan and Lan [30] examined the reliability of
a repairable M/G/1 queueing system with patient servers and vacations. Vacation in the
M/G/1 model was explored by Afanasyev [2]. Joseph[12] did a comparative analysis of
queueing systems with different impatience and activation lengths under the N policy. Vi-
jayashree and Ambika [29] studied anM/M/1 queue with differentiated vacations and pro-
vided time-dependent mean and variance using Laplace transforms and continued fractions.
Gray et al. [10] examined a vacation queueing model with service breakdowns using the
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matrix-geometric method. Madhu and Praveen [22] examine an M/Ek/1 queueing model
with state-dependent server breakdowns and working vacations in which steady-state proba-
bilities are derived using Chapman-Kolmogorov equations, and the average queue length is
obtained through probability generating function. Chakravarthy et al. [5] analyzed a queue-
ing model with server breakdowns, repairs, vacations, and backup. Qingqing [24] analyzed
the MX/M/1 queue with a two-stage vacation policy using the matrix-analytic method.
Kalita et al. [14] analyzed the single-server queue with a modified vacation policy. The
decomposition property of an MX/G/1 queue with vacations was examined by Kleiner et
al. [17]. They introduced a queueing system that alternated between working and vacation
modes. Adan et al. [1] examined the synchronized reneging in queueing systems with va-
cations, where the vacation period follows a general distribution. Altman and Yechiali [3]
examined a model with an exponentially distributed vacation period and customer reneg-
ing during the vacations. An MX/G/1 queue with randomized working vacations and at
most J vacations was investigated by Gao and Yao [8]. Samanta and Parveen [25] used the
supplementary variable technique to study the GeoX/G/1 queue under EAS setup without
vacation. The discrete-time Geo/G/1 queue with multiple adaptive vacations was studied
by Zhang and Tian [33] under the presumption that the server takes a maximum random
number of vacations after servicing customers in the system. Fiems and Bruneel [7] con-
sidered the discrete-time GI/G/1 queue with timed vacations. Wang et al. [31] examined
the discrete-timeGeo/G/1 queue with randomized vacations and at most J vacations. Tang
et al. [27] examined the reliability metrics of a discrete-time GeoX/G/1 queueing system
under the LAS-DA setup with multiple adaptive delayed vacations and unreliable service
stations. Lan and Tang [18] considered the optimal control technique and departure process
structure for a discrete-time Geo/G/1 queue with multiple server vacations under LAS-
DA. A simple mean value analysis is used by Li et al. [19] to investigate customer joining
strategies in a discrete-time Geo/G/1 queue with server vacations. The queueing system
for processing service items under vacation and the N policy with impatient customers was
investigated by Divya et al. [6]. Wang at el. [32] examined the discrete-time Geo/G/1
queue with disastrous and non-disastrous failures using supplementary variable technique.
Using the embedded Markov chain technique, Gao and Yin [9] investigated the discrete-
time GeoX/G/1 queue with geometrically working vacations and vacation interruption. In
contrast to the above literature, the development of the GeoX/G/1 queue with vacation in
discrete-time under EAS setup is noteworthy. However, there is a lack of studies on the
GeoX/G/1 queue with a single vacation under the EAS setup.

In this paper, our work fills the gap in the existing literature by investigating the
GeoX/G/1 queue with single vacation under the EAS setup. A lot of study is done un-
der the presumption of the LAS-DA. Despite its potential utility in various contexts, such as
data scheduling, telecommunications and networks, the study of the EAS setup is necessary.
In this model, the server’s vacation time and the customers’ service times follow general dis-
tributions, and customers arrive in batches based on a batch Bernoulli process. We propose
an alternative approach in this work that eliminates the need to create a transition probability
matrix to determine the distributions of system length at various time epochs and the waiting
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time for an arbitrary customer of an arrival batch. To achieve this, we use the supplemen-
tary variable approach to mathematically build the model and apply the theory of difference
equations to derive the generating functions that characterize the system’s behavior. First,
we calculate the probability generating functions of the system’s length distribution at var-
ious time epochs. Next, we use the partial fraction method on the probability generating
functions to get the probabilities in terms of the zeros of the characteristic polynomial. This
method is a simple but effective way to get the probabilities. Several numerical outcomes
are presented in tables and graph using the analytical findings derived from this study.

The model discussed in this paper can be applied to electric vehicle (EV) charging sta-
tions by modeling the arrival of EVs and their charging times. A geometric distribution is
used to illustrate the arrival process that estimates the probability of vehicles arriving at the
station at specific time intervals. A general service time distribution captures the varying
service time based on factors such as battery capacity and charging power. During off-peak
hours or when no vehicles are present, the station may take a vacation or temporarily shut
down. To reduce waiting times and effectively manage resources, the model analyzes the be-
havior of the queue and helps optimize station operations, including maintenance scheduling
and rate adjustments.

The remaining portions of the paper are arranged as follows. The model is addressed in
Section 2. The system length distributions at different time epochs are examined in Section
3. The distribution of waiting time for any customer is found in Section 4. The numerical
outcomes are shown in Section 5. Section 6 concludes the paper. Finally, we explain the way
to extract the unknown probabilities from the probability generating functions in Appendix
A.

2. Model description
We consider a discrete-time GeoX/G/1 queueing model with single vacation in which

customers arrive in batches according to batch Bernoulli process. The service time of cus-
tomers and the vacation time of the server follow general distributions. We explain below
the various processes involved in the model:
• Arrival process: Customers arrive at the system in batches according to batch Bernoulli
process with rate λ, 0 < λ < 1. The number of customers in each batch is determined by a
random variable X which has a probability mass function (p.m.f.) P (X = i) = gi, i ⩾ 1,
and an associated probability generating function (p.g.f.) G(z) =

∑∞
k=1 gkz

k, |z| ⩽ 1. The
mean number of customers per batch is also determined by g =

∑∞
k=1 kgk < ∞.

• Service process: The service time does not always follow a particular probability distribu-
tion in real-world scenarios. Therefore, we consider here a general distribution for the service
time, which can cover a wide range of probability distributions. The variables sn, n ⩾ 1,
show the probability that the service time is of length n slots with p.g.f. S(z) =

∑∞
n=1 snz

n,
|z| ⩽ 1. Let E[S] = S(1)(1) be the mean service time, where f (r)(ζ) means the r-th order
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derivative of f(z) calculated at z = ζ .
• Vacation process: We refer to it as a vacation when the server remains inactive in the
parent queue. The concerned model is analyzed for a single vacation. In a queueing sys-
tem with single vacation, the server takes an arbitrary length of vacation when the parent
queue is empty. When the server returns from a vacation, if there is at least one customer
in queue, it will serve them one at a time until the queue is empty. If no customers wait for
service when the server returns from a vacation, it stays idle until at least one arrives. Let
vn, n ⩾ 1, represent the probability that the duration of the vacation is n slots with p.g.f.
V (z) =

∑∞
n=1 vnz

n, |z| ⩽ 1. The mean vacation time is denoted by E[V ] = V (1)(1).
• Early arrival system: The time axis is divided into equal-length slots in a discrete-time
queueing system. We define the time axis as 0, 1, 2, . . . , t, . . . , and the length of each slot as
unity. Since we are discussing here the early arrival system (EAS), batch arrival happens just
after the beginning of a slot, and departure happens just before the end of a slot. The vacation
initiation epoch takes place just after an arrival epoch and vacation termination epoch takes
place just after a departure epoch. Figure 1 shows the occurrences of events at different time
epochs.
• Traffic intensity: For system stability, the traffic intensity is ρ = λgE[S] < 1.

D (Departure)

△
t − 1

A (Batch arrival)

⊛ ☀
t∗

D (Departure)

△
t

A (Batch arrival)

⊛ ☀
t∗ + 1

D (Departure)

△
t + 1

A (Batch arrival)

⊛

∶ Batch arrival epoch
∶ Departure epoch

☀ ∶ Outside observer’s epoch
∶ Random epoch

△ ∶ Vacation termination epoch
⊛ ∶ Vacation initiation epoch

Fig. 1: Significant time epochs in EAS.

ξt∗ : state of the server at time t∗ and it is defined as

ξt∗ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if the server is in the idle state,

1, if the server is on vacation state,

2, if the server is in busy state.

In the steady-state, let us define their joint probabilities as

po(n,u) = lim
t∗→∞

P{Mt∗ = n,Ut∗ = u, ξt∗ = 2}, u ⩾ 0, n ⩾ 1,

ωo(n,u) = lim
t∗→∞

P{Mt∗ = n,Vt∗ = u, ξt∗ = 1}, u ⩾ 0, n ⩾ 0,

νo = lim
t∗→∞

P{Mt∗ = 0, ξt∗ = 0}.

We construct the following steady-state difference equations by observing the states
of the system at two consecutive outside observer’s epochs t∗ and t∗+1, and using the
remaining service and vacation times as the supplementary variables:

νo = νo(1 − λ) + ωo(0,0)(1 − λ), (1)

po(n,u − 1) = νoλgnsu + po(n,u)(1 − λ) +
n−1

∑
i=1

po(i, u)λgn−i +
n

∑
i=1

po(i,0)λgn+1−isu

+(po(n + 1,0) + ωo(n,0)) (1 − λ)su +
n−1

∑
i=0

ωo(i,0)λgn−isu, n ⩾ 1, u ⩾ 1,(2)

ωo(0, u − 1) = ωo(0, u)(1 − λ) + po(1,0)(1 − λ)vu, u ⩾ 1, (3)

ωo(n,u − 1) = ωo(n,u)(1 − λ) +
n−1

∑
i=0

ωo(i, u)λgn−i, n ⩾ 1, u ⩾ 1, (4)

6

Figure 1. Significant time epochs in EAS.

3. System length distributions
The distributions of the system length at three different time epochs (outside observer’s,

post-departure and random) are derived in this section. We do this using the server’s remain-
ing vacation time and a customer’s remaining service time as supplementary variables.
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3.1. System length at outside observer’s epoch

The following random variables are used to define the situation of the system at outside
observer’s epoch t∗:
Mt∗ : number of customers in the system (including one in service, if any) at t∗,
Ut∗ : remaining service time of a customer in service at t∗,
Vt∗ : remaining vacation time of the server at t∗,
ξt∗ : state of the server at time t∗ and it is defined as

ξt∗ =


0, if the server is in the idle state,
1, if the server is on vacation state,
2, if the server is in busy state.

In the steady-state, let us define their joint probabilities as

po(n, u) = lim
t∗→∞

P{Mt∗ = n, Ut∗ = u, ξt∗ = 2}, u ⩾ 0, n ⩾ 1,

ωo(n, u) = lim
t∗→∞

P{Mt∗ = n, Vt∗ = u, ξt∗ = 1}, u ⩾ 0, n ⩾ 0,

νo = lim
t∗→∞

P{Mt∗ = 0, ξt∗ = 0}.

We construct the following steady-state difference equations by observing the states of the
system at two consecutive outside observer’s epochs t∗ and t∗ + 1, and using the remaining
service and vacation times as the supplementary variables:

νo = νo(1− λ) + ωo(0, 0)(1− λ), (1)

po(n, u− 1) = νoλgnsu + po(n, u)(1− λ) +
n−1∑
i=1

po(i, u)λgn−i

+
n∑

i=1

po(i, 0)λgn+1−isu + (po(n+ 1, 0) + ωo(n, 0)) (1− λ)su

+
n−1∑
i=0

ωo(i, 0)λgn−isu, n ⩾ 1, u ⩾ 1, (2)

ωo(0, u− 1) = ωo(0, u)(1− λ) + po(1, 0)(1− λ)vu, u ⩾ 1, (3)

ωo(n, u− 1) = ωo(n, u)(1− λ) +
n−1∑
i=0

ωo(i, u)λgn−i, n ⩾ 1, u ⩾ 1, (4)

where
∑k2

i=k1
= 0 if k2 < k1.

Now, using po∗(n, z) =
∑∞

u=0 p
o(n, u)zu, n ⩾ 1 and ωo∗(n, z) =

∑∞
u=0 ω

o(n, u)zu, n ⩾ 0,
|z| ⩽ 1 in (2) - (4), we obtain

zpo∗(n, z) = νoλgnS(z) + (po∗(n, z)− po(n, 0))(1− λ) + po(n+ 1, 0)(1− λ)S(z)
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+
n−1∑
i=1

(po∗(i, z)− po(i, 0))λgn−i +
n∑

i=1

po(i, 0)λgn+1−iS(z)

+ωo(n, 0)(1− λ)S(z) +
n−1∑
i=0

ωo(i, 0)λgn−iS(z), n ⩾ 1, (5)

zωo∗(0, z) = (1− λ)(ωo∗(0, z)− ωo(0, 0)) + po(1, 0)(1− λ)V (z), (6)

zωo∗(n, z) = (1− λ)(ωo∗(n, z)− ωo(n, 0))+
n−1∑
i=0

(ωo∗(i, z)− ωo(i, 0))λgn−i, n ⩾ 1.(7)

Using ω̃o∗(θ, z) =
∑∞

n=0 ω
o∗(n, z)θn and ω̃o(θ, 0) =

∑∞
n=0 ω

o(n, 0)θn, |θ| ⩽ 1 in (6) and
(7), we obtain

[z − (1− λ+ λG(θ)]ω̃o∗(θ, z) = po(1, 0)(1− λ)V (z)− (1− λ+ λG(θ))ω̃o(θ, 0). (8)

Substitute z = 1− λ+ λG(θ) in (8), we get

ω̃o(θ, 0) =
po(1, 0)(1− λ)V (1− λ+ λG(θ))

1− λ+ λG(θ)
. (9)

Put θ = 0 in (9), we obtain

ωo(0, 0) = po(1, 0)V (1− λ). (10)

Using (10) in (1), we get

νo =
po(1, 0)(1− λ)V (1− λ)

λ
. (11)

Using p̃o∗(θ, z) =
∑∞

n=1 p
o∗(n, z)θn and p̃o(θ, 0) =

∑∞
n=1 p

o(n, 0)θn in (5), we get

[z − (1− λ+ λG(θ)]p̃o∗(θ, z) =

(
S(z)

θ
− 1

)
(1− λ+ λG(θ))p̃o(θ, 0)

− ωo(0, 0)(1− λ)S(z)− po(1, 0)(1− λ)S(z)

+ (1− λ+ λG(θ))ω̃o(θ, 0)S(z) + νoλG(θ)S(z). (12)

Substitute z = 1− λ+ λG(θ) in (12), and using (9) - (11), we get

p̃o(θ, 0) =
po(1, 0)θ(1− λ){V (1− λ)(G(θ)− 1) + V (1− λ+ λG(θ))− 1}S(1− λ+ λG(θ))

(1− λ+ λG(θ))(θ − S(1− λ+ λG(θ)))
. (13)

Let pon ≡ po∗(n, 1) =
∑∞

u=0 p
o(n, u), n ⩾ 1, and ωo

n ≡ ωo∗(n, 1) =
∑∞

u=0 ω
o(n, u), n ⩾ 0,

represent the probability that n customers are in the system at outside observer’s epoch, when
the server is busy and on vacation, respectively.
Define ωo(θ) =

∑∞
n=0 ω

o
nθ

n and substitute z = 1 in (8) and using (9), we get

ωo(θ) =
po(1, 0)(1− λ)(1− V (1− λ+ λG(θ)))

λ(1−G(θ))
. (14)
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Define po(θ) =
∑∞

n=1 p
o
nθ

n and substitute z = 1 in (12), then using (9) - (11) and (13), we
obtain

po(θ) =
po(1, 0)θ(1− λ){V (1− λ)(G(θ)− 1) + V (1− λ+ λG(θ))− 1}(1− S(1− λ+ λG(θ)))

λ(1−G(θ))(θ − S(1− λ+ λG(θ)))
.(15)

Let Πo(θ) = νo + po(θ) + ωo(θ). Using the normalizing condition Πo(1) = 1, we get

po(1, 0) =
λ(1− ρ)

(1− λ)(V (1− λ) + λE[V ])
. (16)

Now, (11), (14) and (15) are completely known to us. The extraction of the probabilities pon,
n ⩾ 1 and ωo

n, n ⩾ 0, are explained in Appendix A.
Remark 1: By setting V (z) = z, i.e., when the server never takes vacation but remains
idle, our model reduces to the standard non-vacation GeoX/G/1 queueing system. With
this assumption, Πo(θ) = νo + po(θ) + ωo(θ) simplifies to

Πo(θ) =
(1− ρ)(1− θ)S(1− λ+ λG(θ))

S(1− λ+ λG(θ))− θ
.

This simplified result is identical to Samanta and Parveen [25, Eq. 9]. It also matches
the expressions given in Takagi [26, Eq. 1.61] and Bruneel and Kim [4, Eq. 1.21] for the
GeoX/G/1 queue with late arrival system with delayed access as it should be.

3.2. System length at post-departure epoch

Let p+k and ω+
k , k ⩾ 0, denote the probability that k customers are in the system at

service completion and vacation termination epochs, respectively. Using the probabilistic
argument, p+k and ω+

k can be found by constructing a connection between the post-departure
and outside observer’s epochs as

p+k = lim
t∗→∞

Pr[Mt∗ = k + 1, Ut∗ = 0, ξt∗ = 2]

E∗ ,

=
1

E∗p
o(k + 1, 0), k ⩾ 0, (17)

ω+
k = lim

t∗→∞

Pr[Mt∗ = k + 1, Vt∗ = 0, ξt∗ = 1]

E∗ ,

=
1

E∗ω
o(k, 0), k ⩾ 0, (18)

where E∗ denotes the mean inter-departure time.
Using p+(θ) =

∑∞
n=0 p

+
n θ

n and ω+(θ) =
∑∞

n=0 ω
+
n θ

n in (17) and (18), we get

p̃o(θ, 0) = θE∗p+(θ), (19)
ω̃o(θ, 0) = E∗ω+(θ). (20)
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Using (17) for n = 0 and (19) in (13), we get

p+(θ) =
p+0 (1− λ){V (1− λ)(G(θ)− 1) + V (1− λ+ λG(θ))− 1}S(1− λ+ λG(θ))

(1− λ+ λG(θ))(θ − S(1− λ+ λG(θ)))
. (21)

Using (17) for n = 0 and (20) in (9), we get

ω+(θ) =
p+0 (1− λ)V (1− λ+ λG(θ))

1− λ+ λG(θ)
. (22)

Using the normalizing condition p+(1) + ω+(1) = 1, we get

p+0 =
1− ρ

(1− λ)[1− ρ+ λgE[V ] + gV (1− λ)]
.

Now, both the rational functions (21) and (22) are completely known to us. The extraction
of the probabilities p+n , n ⩾ 1 and ω+

n , n ⩾ 0, are explained in Appendix A.
Remark 2: By setting V (z) = z, i.e., when the server never takes vacation but remains
idle, our model reduces to the standard non-vacation GeoX/G/1 queueing system. With
this assumption, equation (21) simplifies to

p+(θ) =
(1− ρ)(1−G(θ))S(1− λ+ λG(θ))

g(1− λ+ λG(θ))(S(1− λ+ λG(θ))− θ)
.

This simplified result is same as Samanta and Parveen [25, Eq. 19]. It also matches with the
result of Takagi [26, Eq. 1.117] for theGeoX/G/1 queue in EAS which is derived using the
embedded Markov chain technique.

3.3. System length at random epoch

The following random variables define the state of the system at a random epoch t:
Yt: number of customers in the system (including one in service, if any) at t,
It: remaining service time of a customer in service at t,
Jt: remaining vacation time of the server at t,
ϕt : state of the server at time t and it is defined as

ϕt =


0, if the server is in idle state,
1, if the server is on vacation state,
2, if the server is in busy state.

In the steady-state, let us define their joint probabilities as

p(n, u) = lim
t→∞

P{Yt = n, It = u, ϕt = 2}, u ⩾ 0, n ⩾ 1,

ω(n, u) = lim
t→∞

P{Yt = n, Jt = u, ϕt = 1}, u ⩾ 0, n ⩾ 0,
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ν = lim
t→∞

P{Yt = 0, ϕt = 0}.

Observing the system’s states at random epoch t and outside observer’s epochs t∗, we obtain

ν = νo + ωo(0, 0) + po(1, 0), (23)
p(n, u− 1) = po(n, u) + po(n+ 1, 0)su + ωo(n, 0)su, u ⩾ 1, n ⩾ 1, (24)
ω(n, u− 1) = ωo(n, u), u ⩾ 1, n ⩾ 0. (25)

Define p∗(n, z) =
∑∞

u=0 p(n, u)z
u, n ⩾ 1 and ω∗(n, z) =

∑∞
u=0 ω(n, u)z

u, n ⩾ 0, |z| ⩽ 1,
and use them in (24) and (25), we get

zp∗(n, z) = po∗(n, z)− po(n, 0) + po(n+ 1, 0)S(z) + ωo(n, 0)S(z), n ⩾ 1, (26)
zω∗(n, z) = ωo∗(n, z)− ωo(n, 0), n ⩾ 0. (27)

Let pn ≡ p∗(n, 1) =
∑∞

u=0 p(n, u), n ⩾ 1, and ωn ≡ ω∗(n, 1) =
∑∞

u=0 ω(n, u), n ⩾ 0,
represent the probability that n customers are in the system at random epoch, when the server
is busy and on vacation, respectively. Substituting z = 1 in (26) and (27) then using (17)
and (18), we obtain

pn = pon + E∗(p+n − p+n−1 + ω+
n ), n ⩾ 1,

ωn = ωo
n − E∗ω+

n , n ⩾ 0,

where E∗ can be obtained by using (16) in (17) for k = 0 as

E∗ =
λ(1− ρ)

p+0 (1− λ)[λE[V ] + V (1− λ)]
.

Remark 3: By setting ωo(n, 0) = 0, n ⩾ 0 in (23) and (24), i.e., when the server never takes
vacation but remains idle, ourmodel reduces to the standard non-vacationGeoX/G/1 queue-
ing system. With this assumption, equations (23) and (24) match those given in Samanta and
Parveen [25, Eqs. 22, 23].

4. Waiting time distribution
This section presents the waiting time distribution of an arbitrary customer within a

batch. The probability that a customer will wait in the queue l time slots is represented by
ϖ(l), l ⩾ 0. Further, letW (θ) =

∑∞
l=0 ϖ(l)θl. The mean waiting time in the queue (Wq) is

the first-order derivative of W (θ) evaluated at θ = 1. Note that an arbitrary customer of a
batch could observe the system upon arrival in any one of the following scenarios.
Case 1: Let ϖ1(l), l ⩾ 0, be the steady-state probability that, upon arrival of the batch, any
arbitrary customer would wait in the queue for l time slots and observe that the server is in
idle state. Further, letW1(θ) =

∑∞
l=0 ϖ1(l)θ

l. An arbitrary customer in a batch with position
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r must wait in queue for the services of (r − 1) customers to be completed. Consequently,
we have

W1(θ) = ν

∞∑
r=1

g−r [S(θ)]
r−1, (28)

where g−r = 1
g

∑∞
j=r gj , r ⩾ 1, signifies the probability that the position of an arbitrary

customer in an arriving batch is r.
Using (23) in (28), after simplification, we obtain

W1(θ) = (νo + ωo(0, 0) + po(1, 0))

(
1−G(S(θ))

g(1− S(θ))

)
.

Case 2: Letϖ2(l), l ⩾ 0, be the probability that, at the moment of batch arrival, an arbitrary
customer would see the server in a busy state and wait in the queue for l time slots. Moreover,
letW2(θ) =

∑∞
l=0 ϖ2(l)θ

l. An arbitrary customer of a batch whose position is rmust wait in
queue for the service completions of the customer currently being serviced and the (n+r−2)
customers in front of the arbitrary customer. Consequently, we get

W2(θ) =
∞∑
n=1

θp∗(n, θ)
∞∑
r=1

g−r [S(θ)]
n+r−2. (29)

After simplification of (29), we obtain

W2(θ) =

(
θp̃∗(S(θ), θ)

S(θ)

)(
1−G(S(θ))

g(1− S(θ))

)
.

Case 3: Let ϖ3(l), l ⩾ 0, be the steady-state probability that, upon arrival of the batch,
an arbitrary customer would wait in the queue for l time slots and observe the server is on
vacation state. Further, let W3(θ) =

∑∞
l=0 ϖ3(l)θ

l. Suppose the position of an arbitrary
customer of the batch is r. In that case, the customer must wait in the queue for the server’s
remaining vacation time and service completions of (n+ r − 1) customers waiting in front
of the arbitrary customer. Therefore, we have

W3(θ) =
∞∑
n=0

θω∗(n, θ)
∞∑
r=1

g−r [S(θ)]
n+r−1. (30)

After simplification of (30), we obtain

W3(θ) = (θω̃∗(S(θ), θ))

(
1−G(S(θ))

g(1− S(θ))

)
.

Combining the above three cases, letW (θ) = W1(θ) +W2(θ) +W3(θ), we obtain

W (θ) =

(
νo + ωo(0, 0) + po(1, 0) +

θp̃∗(S(θ), θ)

S(θ)
+ θω̃∗(S(θ), θ)

)(
1−G(S(θ))

g(1− S(θ))

)
.(31)
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To determine the simplified form of W (θ) obtained in (31), we define p̃∗(θ, z) =∑∞
n=1 p

∗(n, z)θn and ω̃∗(θ, z) =
∑∞

n=0 ω
∗(n, z)θn, |θ| ⩽ 1, and use them in (26) and (27),

we get

zp̃∗(θ, z) = p̃o∗(θ, z) +

(
S(z)

θ
− 1

)
p̃o(θ, 0) + (ω̃o(θ, 0)

−ωo(0, 0)− po(1, 0))S(z), (32)
zω̃∗(θ, z) = ω̃o∗(θ, z)− ω̃o(θ, 0). (33)

Using (32) and (33) in (31), after simplification, we obtain

W (θ) =

(
νo +

p̃o∗(S(θ), θ)

S(θ)
+ ω̃o∗(S(θ), θ)

)(
1−G(S(θ))

g(1− S(θ))

)
. (34)

Using (8), (11) and (12) in (34), we obtain

W (θ) =

(
po(1, 0)(1− λ){V (1− λ)(θ − 1) + λ(V (θ)− 1)}

λ[θ − (1− λ+ λG(S(θ))]

)(
1−G(S(θ))

g(1− S(θ))

)
. (35)

The extraction of the probabilities ϖ(l), l ⩾ 0, are given in Appendix A.
Remark 4: By setting V (z) = z, i.e., when the server never takes vacation but remains
idle, our model reduces to the standard non-vacation GeoX/G/1 queueing system. With
this assumption, equation (35) simplifies to

W (θ) =
(1− ρ)(1− θ)(1−G(S(θ)))

g(1− λ+ λG(S(θ))− θ)(1− S(θ))
.

This simplified result is same as Samanta and Parveen [25, Eq. 33]. It also matches the
expressions in Takagi [26, Eqs. 1.51, 1.52a] for the GeoX/G/1 queue under late arrival
system with delayed access as it should be.

5. Discussion of numerical results
In this section, we provide numerical results to demonstrate the correctness of the an-

alytical findings presented in this paper. To properly examine the system’s behavior, we
analyze the model with various arrival, service and vacation time distributions. Tables 1 -
3 show the numerical results of the system length distributions at different time epochs and
the waiting time distribution together with other performance measures. It is evident from
all of the instances examined here that νo +

∑∞
n=0 ω

o
n = 1− ρ is true. Furthermore, we ex-

tensively investigate the performance measures of the system such as the expected number
of customers in the queue denoted as Lq =

∑∞
n=1(n − 1)pon +

∑∞
n=0 nω

o
n and the expected

waiting time of a customer in the queue denoted as Wq =
Lq

λg
. The Lq and Wq are provided

at the bottom of each table. Significantly, we notice that Little’s law holds in all the cases as
it should. These data confirm the correctness of our analytical and numerical processes. We
perform all of our computations precisely, even though we display the results to seven dec-
imal places. Furthermore, these results can be useful to other researchers when comparing
our findings with those obtained using different methodologies.
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Table 1. System length and waiting time distributions, when arrival batch size distribution
is geometrically distributed with p.m.f. gk = (1− η)k−1η, k ⩾ 1, (0 < η < 1) and p.g.f.
G(z) = ηz

1−(1−η)z
. Here, we have taken η = 0.45 which gives g = 1

η
= 2.2222222 and

λ = 0.085. The service time is chosen as arbitrarily distributed with s1 = 0.4, s5 = 0.25
and s9 = 0.35. Thus E[S] = 4.80. These lead to ρ = 0.9066666. The vacation time is

chosen as arbitrarily distributed with v2 = 0.2, v3 = 0.3 and v5 = 0.5. Hence E[V ] = 3.8.
n ωo

n pon ω+
n p+n ωn pn l ϖ(l)

0 0.0252895 0.0304307 0.0423859 0.0233306 0 0.0354068
1 0.0015310 0.0414826 0.0033839 0.0418742 0.0013131 0.0416675 1 0.0142348
2 0.0008942 0.0406642 0.0020207 0.040926 0.0007642 0.0407332 2 0.0091880
3 0.0005215 0.0393936 0.0012031 0.0396677 0.0004441 0.0393900 3 0.0073622
4 0.0003037 0.0378904 0.0007144 0.0382145 0.0002578 0.0378428 4 0.0073336
5 0.0001766 0.0362852 0.0004231 0.0366571 0.0001494 0.0362121 5 0.0103598
6 0.0001026 0.0346544 0.0002500 0.0350597 0.0000865 0.0345677 6 0.0081527
7 0.0000595 0.0330421 0.0001474 0.0334653 0.0000501 0.0329489 7 0.0071046
8 0.0000345 0.0314726 0.0000868 0.0319013 0.0000289 0.0313774 8 0.0068033
9 0.0000199 0.0299588 0.0000510 0.0303840 0.0000167 0.0298644 9 0.0132332
10 0.0000115 0.0285069 0.0000299 0.0289226 0.0000096 0.0284148 10 0.0108139
17 0.0000002 0.0200673 0.0000006 0.0203741 0.0000002 0.0199998 50 0.0059875
20 0.0000000 0.0172580 0.0000001 0.0175222 0.0000000 0.0171999 150 0.0021295
50 0.0000000 0.0038186 0.0000000 0.0038772 0.0000000 0.0038058 250 0.0007571
150 0.0000000 0.0000250 0.0000000 0.0000254 0.0000000 0.0000249 500 0.0000571
200 0.0000000 0.0000020 0.0000000 0.0000020 0.0000000 0.0000020 800 0.0000025
235 0.0000000 0.0000003 0.0000000 0.0000003 0.0000000 0.0000003 959 0.0000004
261 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1114 0.0000000
... ... ... ... ... ... ... ... ...

Sum 0.0289608 0.9066667 0.0387831 0.9612168 0.0264642 0.9044758 0.9999999

νo 0.0643725

ν 0.0690599

Lq = 17.7394568 Wq = 93.9147713
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Table 2. System length and waiting time distributions, when arrival batch size distribution
is geometrically distributed with p.m.f. gk = (1− η)k−1η, k ⩾ 1, (0 < η < 1) and p.g.f.
G(z) = ηz

1−(1−η)z
. Here, we have taken η = 0.8 which gives g = 1

η
= 1.2500000 and

λ = 0.055. We choose a negative binomial distribution with p.m.f.
sk =

∑∞
k=0

(
k+r−2
k−1

)
(1− σ)rσk−1, r ⩾ 1, (0 < σ < 1), and p.g.f. S(z) =

(
1−σ
1−σz

)r
z as the

service time distribution. For computation purposes, we have taken σ = 0.5 and r = 7.
These lead to E[S] = 8.00 and ρ = 0.5500000. The vacation time is taken as arbitrarily

distributed with v2 = 0.3, v3 = 0.4 and v17 = 0.3. Thus E[V ] = 6.9.

n ωo
n pon ω+

n p+n ωn pn l ϖ(l)

0 0.1145235 0.1879503 0.2609899 0.0591345 0 0.2685350
1 0.0249696 0.2207117 0.0337556 0.1967340 0.0150219 0.2117233 1 0.0350047
2 0.0099978 0.1399827 0.0147280 0.1258396 0.0056574 0.1234305 2 0.0320505
3 0.0037684 0.0831468 0.0062327 0.0747406 0.0019317 0.0699248 3 0.0271211
4 0.0013507 0.0475572 0.0024983 0.0426601 0.0006144 0.0388394 4 0.0291767
5 0.0004642 0.0265755 0.0009487 0.0237909 0.0001846 0.0212944 5 0.0306605
6 0.0001540 0.0146344 0.0003434 0.0130820 0.0000528 0.0115797 6 0.0314219
7 0.0000496 0.0079843 0.0001193 0.0071311 0.0000144 0.0062658 7 0.0315009
8 0.0000155 0.0043310 0.0000400 0.0038663 0.0000038 0.0033807 8 0.0310518
9 0.0000048 0.0023409 0.0000130 0.0020893 0.0000009 0.0018211 9 0.0302627
10 0.0000014 0.0012626 0.0000041 0.0011268 0.0000002 0.0009801 10 0.0293016
12 0.0000001 0.0003660 0.0000003 0.0003267 0.0000000 0.0002836 17 0.0177236
13 0.0000000 0.0001969 0.0000001 0.0001758 0.0000000 0.0001525 25 0.0106123
15 0.0000000 0.0000569 0.0000000 0.0000508 0.0000000 0.0000441 50 0.0017259
20 0.0000000 0.0000026 0.0000000 0.0000023 0.0000000 0.0000024 100 0.0000458
24 0.0000000 0.0000002 0.0000000 0.0000001 0.0000000 0.0000001 150 0.0000012
26 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 175 0.0000001
30 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 185 0.0000000
... ... ... ... ... ... ... ... ...

Sum 0.1553002 0.5500000 0.2466355 0.7533645 0.0826168 0.4903808 0.9999999

νo 0.2946998

ν 0.4270023

Lq = 0.8186303 Wq = 11.9073511
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Table 3. System length and waiting time distributions, when arrival batch size is chosen as
arbitrarily distributed with a finite maximum batch size. The values for λ and the

maximum batch size are considered as 0.06 and 7, respectively. The p.m.f. of batch size
distribution is taken as g1 = 0.40, g3 = 0.25, g5 = 0.15 and g7 = 0.20 with g = 3.30. The

service time is chosen as generally distributed with s1 = 0.60 and s3 = 0.40. Hence
E[S] = 1.80. These lead to ρ = 0.3564000. The p.g.f. of vacation time is taken as

V (z) = z2

(2−z)5
with E[V ] = 7.

n ωo
n pon ω+

n p+n ωn pn l ϖ(l)

0 0.2023976 0.1074201 0.1626894 0.1601411 0 0.1383371
1 0.0163387 0.0689789 0.0149034 0.1167578 0.0104761 0.0567732 1 0.0680358
2 0.0009801 0.0493013 0.0011365 0.1223418 0.0005330 0.0519451 2 0.0552042
3 0.0102605 0.0517226 0.0093794 0.0903645 0.0065708 0.0428331 3 0.0712301
4 0.0012273 0.0380317 0.0014237 0.0900397 0.0006673 0.0384640 4 0.0780976
5 0.0062185 0.0379650 0.0057102 0.0683422 0.0039722 0.0316761 5 0.0584991
6 0.0011233 0.0286877 0.0013041 0.0654345 0.0006103 0.0280569 6 0.0671638
7 0.0082816 0.0275239 0.0076008 0.0326273 0.0052917 0.0176084 7 0.0572123
8 0.0014478 0.0135166 0.0016811 0.0246643 0.0007864 0.0110454 8 0.0574671
9 0.0001541 0.0102362 0.0002047 0.0196592 0.0000736 0.0083479 9 0.0469223
10 0.0007628 0.0081271 0.0008881 0.0145798 0.0004134 0.0064782 10 0.0484481
15 0.0000746 0.0016428 0.0000993 0.0029005 0.0000356 0.0012505 15 0.0196911
25 0.0000003 0.0000598 0.0000005 0.0001043 0.0000001 0.0000436 25 0.0035045
30 0.0000000 0.0000109 0.0000000 0.0000188 0.0000000 0.0000079 50 0.0000369
39 0.0000000 0.0000004 0.0000000 0.0000008 0.0000000 0.0000003 65 0.0000024
46 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 70 0.0000009
50 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 78 0.0000002
80 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 84 0.0000000
... ... ... ... ... ... ... ... ...

Sum 0.2502246 0.3563999 0.1529280 0.8470719 0.1900665 0.3103037 0.9999999

νo 0.3933754

ν 0.4996298

Lq = 1.4413722 Wq = 7.2796576
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We now concentrate on examining the effect of the arrival batch size variance Var[G] onWq.
Three distinct values of Var[G] are considered in such a way that

Var[G] = 5.36 : when g1 = 0.10, g2 = 0.25, g3 = 0.30, g4 = 0.20, g6 = 0.15,

Var[G] = 7.87 : when g1 = 0.65, g4 = 0.05, g6 = 0.30,

Var[G] = 8.61 : when g1 = 0.40, g3 = 0.25, g5 = 0.15, g7 = 0.20.

For this aim, the service time is chosen as generally distributed with s1 = 0.60 and s3 = 0.40.
The p.g.f. of vacation time is taken as V (z) = z2

(2−z)5
. In Figure 2, we observe that increasing

the value of λ leads to a increase inWq. Figure 2 also shows that the value ofWq increases as
Var[G] increases. This is due to the fact that the value of Var[G] increases with the increase of
probability of a larger arrival batch size. Thus, as Var[G] increases, there are more customers
in the system. This indicates that the valueWq increases as Var[G] increases.

Figure 2. Effect of variance of batch arrivals

5.1. Cost analysis

Based on the previous analysis, we now construct the cost function as a linear combina-
tion of costs related to several characteristics of the system such as the number of customers
in the queue, the service time, the vacation time, and the idle time of this model. This cost
function is denoted as TC and it is given by

TC = C1Lq +
C2

E[S]
+

C3

E[V ]
+

C4

E[I]
,

where the expected idle time is provided by

E[I] =

(
E[V ] +

1

λ

)
V (1− λ) + E[V ] (1− V (1− λ))
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= E[V ] +
1

λ
V (1− λ).

The cost components are defined as follows:

• C1: Holding cost per customer per unit time,

• C2: Cost associated with service time,

• C3: Cost associated with vacation time,

• C4: Cost associated with idle time.

In Table 4, we consider an arrival batch size 7 with an arbitrary distribution specified as
g1 = 0.40, g3 = 0.25, g5 = 0.15 and g7 = 0.20. The service time is chosen as arbitrarily
distributed with s1 = 0.60 and s3 = 0.40, and the vacation time follows geometric distribu-
tion with p.g.f. V (z) = ςz

1−(1−ς)z
, (0 < ς < 1). The parameter ς is varied as given below to

achieve different expected vacation timesE[V ]. The goal is to identify the optimum value of
the cost function which is indicated as bold in Table 4. We perform all of our computations
precisely, even though we display the results for E[V ] to two decimal places.

E[V ] = 2.00 : when ς = 0.50

E[V ] = 2.50 : when ς = 0.40

E[V ] = 3.33 : when ς = 0.30

E[V ] = 5.00 : when ς = 0.20

E[V ] = 10.00 : when ς = 0.10

E[V ] = 14.28 : when ς = 0.07

E[V ] = 16.66 : when ς = 0.06

E[V ] = 20.00 : when ς = 0.05

E[V ] = 24.39 : when ς = 0.041.

In Table 5, the batch arrival is assumed to be geometrically distributedwith p.g.f. G(z) =
χz

1−(1−χ)z
, (0 < χ < 1). Here we consider χ = 0.45. The service time is taken as arbitrarily

distributed, and vacation time is chosen as arbitrarily distributed with p.m.f. v1 = 0.2,
v3 = 0.3 and v5 = 0.5. The values of s1, s3, s5, s6 and s9 are adjusted to obtain different
expected service times E[S]. The goal is to identify the optimum value of the cost function
which is indicated as bold in Table 5. We perform all of our computations precisely, even
though we display the results for E[S] to two decimal places.

E[S] = 1.77 : when s1 = 0.759, s3 = 0.172, s5 = 0.013, s6 = 0.022, s9 = 0.034

E[S] = 2.23 : when s1 = 0.714, s3 = 0.132, s5 = 0.033, s6 = 0.042, s9 = 0.079

E[S] = 2.75 : when s1 = 0.649, s3 = 0.097, s5 = 0.084, s6 = 0.046, s9 = 0.124

E[S] = 3.33 : when s1 = 0.569, s3 = 0.127, s5 = 0.050, s6 = 0.051, s9 = 0.203
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Table 4. Cost analysis for varying λ and E[V ]

E[V ] λ = 0.03 λ = 0.04 λ = 0.05 λ = 0.06 λ = 0.07 λ = 0.08

2.00 35.8729556 38.1016958 40.7150026 43.8156906 47.5485074 52.1238742
2.50 31.4237908 33.6912565 36.3535787 39.5131588 43.3143054 47.9669808
3.33 27.0403048 29.3959155 32.1690936 35.4608717 39.4141112 44.2372834
5.00 22.8898201 25.5050482 28.5995239 32.2675456 36.6451898 41.9343339
10.00 20.2914712 24.2192993 28.8488075 34.2127251 40.3967071 47.5632114
14.28 21.4227998 26.8793974 33.1680546 40.2438724 48.1458885 57.0112117
16.66 22.6181370 29.0047868 36.2569493 44.2915395 53.1311172 62.9079033
20.00 24.7246536 32.4559008 41.0581102 50.4092148 60.5218507 71.5304776
24.39 28.0369690 37.5567461 47.9012322 47.9012322 70.6474945 83.2146974

E[S] = 4.00 : when s1 = 0.507, s3 = 0.107, s5 = 0.044, s6 = 0.042, s9 = 0.300

E[S] = 4.76 : when s1 = 0.405, s3 = 0.103, s5 = 0.056, s6 = 0.051, s9 = 0.385

E[S] = 5.66 : when s1 = 0.241, s3 = 0.103, s5 = 0.062, s6 = 0.179, s9 = 0.415

E[S] = 6.72 : when s1 = 0.090, s3 = 0.092, s5 = 0.042, s6 = 0.277, s9 = 0.499

E[S] = 8.00 : when s1 = 0.005, s3 = 0.007, s5 = 0.092, s6 = 0.181, s9 = 0.715.

Table 5. Cost analysis for varying λ and E[S]

E[S] λ = 0.15 λ = 0.020 λ = 0.025 λ = 0.30 λ = 0.035 λ = 0.040

1.77 21.4045941 21.8275694 22.2760505 22.7511926 23.2542611 23.7866466
2.23 19.9102793 20.4397621 21.0104998 21.6254203 22.2878127 23.0013849
2.75 18.9340488 19.5905098 20.3101269 21.0991499 21.9648146 22.9155438
3.33 18.3121377 19.1286706 20.0417001 21.0639709 22.2107961 23.5007339
4.00 17.9587949 18.9807604 20.1504875 21.4935568 23.0421771 24.8374743
4.76 17.8326364 19.1153182 20.6233573 22.4076044 24.5360579 27.1017431
5.66 17.9200322 19.5478289 21.5255384 23.9573972 26.9946701 30.8655118
6.72 18.2622726 20.3821963 23.0752767 26.5719546 31.2473390 37.7557910
8.00 18.9408038 21.8225189 25.7254587 31.2305168 39.4666976 52.9569349

In Table 6, the batch arrival is assumed to be geometrically distributedwith p.g.f. G(z) =
Ψz

1−(1−Ψ)z
, (0 < Ψ < 1). We consider hereΨ = 0.8. We define the service time as a negative

binomial distribution with p.g.f. S(z) =
(

1−Ω
1−Ωz

)r
z, r ⩾ 1 and 0 < Ω < 1. Here we have

taken r = 7. The vacation time is taken as arbitrarily distributed with p.m.f. v2 = 0.3,
v3 = 0.4 and v17 = 0.3. The value of Ω in S(z) is adjusted to obtain different expected
service times E[S]. The goal is to identify the optimum value of the cost function which is
indicated as bold in Table 6. We perform all of our computations precisely, even though we
display the results for E[S] to two decimal places.

E[S] = 1.77 : when Ω = 0.10
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E[S] = 2.23 : when Ω = 0.15

E[S] = 2.75 : when Ω = 0.20

E[S] = 3.33 : when Ω = 0.25

E[S] = 4.00 : when Ω = 0.30

E[S] = 4.76 : when Ω = 0.35

E[S] = 5.66 : when Ω = 0.40

E[S] = 6.72 : when Ω = 0.45

E[S] = 8.00 : when Ω = 0.50.

Table 6. Cost analysis for varying λ and E[S]

E[S] λ = 0.043 λ = 0.045 λ = 0.047 λ = 0.050 λ = 0.053 λ = 0.055

1.77 16.9861303 17.1189169 17.2544658 17.4627920 17.6768857 17.8226917
2.23 15.3697199 15.5104791 15.6543003 15.8756131 16.1034097 16.2587621
2.75 14.2554442 14.4071816 14.5624688 14.8019290 15.0490605 15.2179909
3.33 13.4859278 13.6530849 13.8245925 14.0899564 14.3649833 14.5536791
4.00 12.9830138 13.1723943 13.3674704 13.6708618 13.9873528 14.2057367
4.76 12.7173835 12.9398892 13.1704377 13.5317781 13.9124209 14.1773344
5.66 12.7015117 12.9756509 13.2621676 13.7163941 14.2018971 14.5441608
6.72 13.0017464 13.3614527 13.7422319 14.3562749 15.0271223 15.5093778
8.00 13.7835667 14.2980914 14.8534182 15.7727963 16.8123402 17.5833666

The cost optimization results presented in Tables 4 - 6 provide valuable insights for
operators of EV charging stations. The bold values in these tables identify parameter com-
binations that minimize total costs. For instance, Table 4 demonstrates that the setting of
E[V ] = 10.00 with arrival rate λ = 0.03 achieves the lowest cost of 20.2914712. Simi-
larly, in Table 5, the combination of E[S] = 4.76 and λ = 0.15 yields the lowest cost of
17.8326364. Operators should aim to set the values of E[S] and E[V ] to optimize costs. As
increasing λ beyond these optimal values can lead to raise costs.

6. Conclusion
In this paper, we have analyzed a discrete-time GeoX/G/1 queueing system, where ar-

rival occurs in batches according to the Bernoulli process. Throughout the investigation, we
have assumed the EAS setup. Using a system of difference equations and the supplementary
variable technique, we have obtained probability generating functions at outside observer’s,
post-departure, and random epochs. We have also investigated the waiting time distribution
for a random customer in a batch. We have done a cost analysis and obtained several perfor-
mance measures. A key novelty of this work is the avoidance of constructing the transition
probability matrix, which is a common and often complex step in traditional queueing anal-
ysis. Unlike the conventional approaches that rely on Markov chain and a set of balance
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equations, our method offers a more efficient and straightforward analytical framework. We
have included several numerical examples to make this study comprehensive and valuable to
other researchers. This methodology can be extended to more complex systems, such as the
GeoX/Ga,b/1 queue with vacation or models involving correlated arrivals, priority-based
service, or state-dependent behavior.
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Appendix

A. Extraction of the Probabilities fromCompletelyKnownRational Func-
tion
We consider the function T (θ) =

∑∞
n=1 Tnθ

n, which is used for po(θ) to derive pon,
n ⩾ 1, from (15). Similarly, we take into account the function T (θ) =

∑∞
n=0 Tnθ

n which
is employed as ωo(θ), p+(θ), ω+(θ) and W ∗(θ) to produce ωo

n, p+n , ω+
n and ϖ(n), n ⩾ 0,

from (14), (21), (22) and (35), respectively. Therefore, we discuss here to determine Tn from
T (θ), which is enough to know the procedure to find all the unknown probabilities analyzed
in the above sections. To do this, we use the partial fraction method, which depends on the
knowledge of the zeros in the denominator of T (θ). For simplicity, we represent T (θ) in
rational form as

T (θ) =
N(θ)

D(θ)
. (36)

Since the zeros of D(θ) with absolute values smaller than or equal to one are also the zeros
of N(θ) and have no further importance in the computation of the partial fraction, we need

54



Queueing Models and Service Management

to know the zeros of D(θ) whose absolute value is larger than one. When ρ < 1, Rouche’s
theorem can be used to demonstrate that the function D(θ) has one zero within and on the
unit circle. Let N(θ) and D(θ) be the polynomials of degree b and a, respectively, after
cancellation of all common zeros inside and on the unit circle. The degrees of N(θ) and
D(θ) depend on the distributions of arrival batch size, service time, and vacation time.
•When all the zeros of D(θ) in |θ| > 1 are distinct
Let αr, r = 1, 2, . . . , a, denote the zeros of D(θ) whose absolute value is greater than one.
Now use the partial fraction expansion on (36), we write it as

T (θ) =
b−a∑
k=0

Hkθ
k +

a∑
r=1

Br

θ − αr

, for b ⩾ a, (37)

=
a∑

r=1

Br

θ − αr

, for b < a, (38)

where

Br =
N(αr)

D(1)(αr)
, r = 1, 2, . . . , a,

Hk =
1

k!

(
T (k)(0) +

a∑
r=1

k!Br

αk+1
r

)
, k = 0, 1, . . . , b− a,

with

T (0)(0) =
N(0)

D(0)
,

T (k)(0) =
N (k)(0)−

∑k−1
j=0

(
k
j

)
T (j)(0)D(k−j)(0)

D(0)
, k = 1, 2, . . . , b− a.

Collect the coefficients of θk from (37), we obtain

Tk = Hk −
a∑

r=1

Br

αk+1
r

, k = 0, 1, . . . , b− a,

Tk = −
a∑

r=1

Br

αk+1
r

, k ⩾ b− a+ 1.

Similarly, collect the coefficients of θk from (38), we obtain

Tk = −
a∑

r=1

Br

αk+1
r

, k ⩾ 0.
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•When some of the zeros of D(θ) in |θ| > 1 are repeated
Suppose D(θ) has zeros β1, β2, . . . , βl, βl+1, . . . , βm,(m < a) with multiplicity t1, t2, . . . ,
tl, tl+1, . . . , tm, where each tj ⩾ 1, j = 1, 2. . . . ,m. Use the partial fraction expansion on
(36), we write it as

T (θ) =
b−a∑
k=0

Hkθ
k +

m∑
i=1

ti∑
h=1

Di,h

(θ − βi)h
, for b ⩾ a, (39)

=
m∑
i=1

ti∑
h=1

Di,h

(θ − βi)h
, for b < a, (40)

where

Di,h =

[
F (ti−h)(θ)−

∑ti−h−1
j=0

(
ti−h
j

)
P

(j)
i (θ)Q

(ti−h−j)
i (θ)

(ti − h)!Qi(θ)

]
θ=βi

, h = t1, t2, . . . , ti,

i = 1, 2, . . . ,m,

Hk =
1

k!

(
T (k)(0) + (−1)k+h

m∑
r=1

tr∑
h=1

k!(r + k − 1)!Dr,h

(r − 1)!βk+h
r

)
, k = 0, 1, . . . , b− a,

with

F (θ) =
N(θ)

Λ
,

Pi(θ) =

ti∑
h=1

Di,h(θ − βi)
ti−h, i = 1, 2, . . . ,m,

Qi(θ) =
m∏

k=1,k ̸=i

(θ − βk)
tk , i = 1, 2, . . . ,m,

where Λ is the highest degree coefficient of D(θ).
Collect the coefficients of θk from (39), we obtain

Tk = Hk −
m∑
i=1

ti∑
h=1

Di,hv(k, i, h), k = 0, 1, 2, . . . , b− a,

Tk =
m∑
i=1

ti∑
h=1

Di,hv(k, i, h), k > b− a,

where
∞∑
n=0

v(n, i, h)θn =
1

(θ − βi)h
. (41)
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Take log on both sides of (41), we obtain

log

(
∞∑
n=0

v(n, i, h)θn

)
= −h log(θ − βi). (42)

Upon differentiating (42) with respect to θ, we get

(θ − βi)
∞∑
n=1

nv(n, i, h)θn−1 = −h

∞∑
n=0

v(n, i, h)θn. (43)

Collecting the constant terms from (41) and coefficients of θn, n ⩾ 1, from (43), we obtain

v(0, i, h) =
1

(−βi)h
,

v(n, i, h) =
(n− 1 + h)v(n− 1, i, h)

nβi

.

which leads to

v(n, i, h) =
(h+ n− 1)!(−1)h

n!(h− 1)!βh+n
i

, n ⩾ 0.

Similarly, collecting the coefficients of θn from both the sides of (40), we obtain

Tn =
m∑
i=1

ti∑
h=1

Di,hv(n, i, h), n ⩾ 0.
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