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Abstract: This paper analyzes two-stage flow lines where rawmaterial is processed sequen-
tially in two stages to produce finished units. There are multiple machines at each stage that
randomly break down and require repair. There is a limited amount of storage space (buffer)
between the two stages. When the buffer is full, some or all machines at the first stage may
be blocked (i.e., forced to idle due to the inability to unload a finished unit), and when the
buffer is empty, some or all machines at the second stage may starve (i.e., forced to idle
due to a lack of jobs for processing). The state changes in the system can be described by
a continuous-time Markov chain when processing times, times between machine failures,
and repair times are exponentially distributed. The study focuses on the variability and au-
tocorrelation structure of the output stream of finished products from stage two. Efficient
algorithms are developed to compute steady-state system characteristics using matrix ana-
lytical methods. The paper presents detailed numerical results highlighting the qualitative
features of system behavior for a wide range of parameter values. Our key finding is that the
output process of the system approximates a Poisson process for buffer size as small as one,
and the numbers of machines at the two stages as small as two.

Keywords: Autocorrelation, blocking, matrix analytical methods, output process, produc-
tion flow lines.

1. Introduction
A flow line (also referred to as automatic transfer or production line) is a manufacturing

system consisting of workstations separated by intermediate storage areas or buffers, where
material flows in a fixed sequence, visiting each work center exactly once. Multiple parallel
machines may be used at one or more workstations to balance production capacity across
different stages of production. Intermediate buffer space decouples successive stages of
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production and reduces the effect of machine failures. Flow lines are employed in high-
volume, multi-stage production or service facilities. Manufacturing examples of flow lines
include the production of automobiles and electronics, food packaging, furniture production,
and flexible manufacturing systems. Service examples of flow lines include restaurants,
hotels, banks, customer service centers, and telecommunication services.

The design of such systems consists of selecting numbers of parallel machines at each
stage, size of buffer spaces, and the capacity to repair failed machines to achieve the desired
average output rate at minimal overall cost. Capacity planning for flow lines often involves
trade-offs between capital cost and the desired service or output level. Understanding flow
line behavior is crucial in evaluating the economic implications at the design and operational
stages. The two most important measures of performance of a flow line are the rate and vari-
ability of the output. Variability in output is important because even with a sufficient mean
rate of output, high variability can lead to times of excess inventories with the associated in-
ventory carrying costs, and times of shortages resulting in lost sales and the resulting damage
to customer goodwill.

Literature on modeling and analyzing flow lines is vast and covers systems with and
without buffers, with and without workstation failures, with single or multiple machines at
each workstation, with possible scrapping of units, with random or deterministic processing
times, using exact or approximate analysis, and using discrete or continuous time analysis.
In this paper, we limit our literature review to studies focusing exclusively on variability
and correlation structure of the output process from flow lines. Studies dealing solely with
throughput rate analysis are included only when relevant to the current study. For a compre-
hensive review of flow line models, readers can refer to Dallery and Gershwin [6], Li et al.
[17], and Tan [29].

Several studies highlight the importance of understanding the variability of output from
a flow line and its autocorrelation structure for effective management of manufacturing and
service systems. Tan [29] reports that data from a consumer durable manufacturer shows
a standard deviation of daily production as high as 10.8% of the mean. Assaf [2] reports
that in an engine-block production line the standard deviation of daily production over 10
days was observed to be 11.5% of the mean. Assaf [2] demonstrated that reducing the out-
put variability can significantly improve service level for a wide range of demand patterns.
Betterton and Silver [3] show that knowledge of the variance of interdeparture times can
help identify bottlenecks in serial production lines. Inman [14] observed autocorrelation in
the interarrival times to workstations in automotive body welding lines. Tan [29] reported
significant autocorrelation in the interdeparture times of cars leaving an assembly line of
a Japanese automotive manufacturer. Altiok and Melamed [1] found that autocorrelations
at various manufacturing stages negatively affect overall performance. Dizbin and Tan [8]
show that ignoring these correlations can result in severe overestimation or underestimation
of key performance measures.

Study of the variability and correlation structure of the output from flow lines has re-
ceived a great deal of attention. Miltenburg [19], Gershwin [9], and Dincer and Deler [7],
studied output variability in terms of the variance of N(t), the number of units produced in
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an arbitrary time interval (0, t). More recent studies by He et al. [10], and Shin and Moon
[23], used a Markovian arrival process (MAP) (Latouche and Ramaswami [15]) to study the
variance of N(t). Tan [27, 28] used a Markov reward model to develop a recursive method
to determine the mean and the variance of N(t) for a two-stage production line with a fi-
nite intermediate buffer. These studies do not address the correlation structure of the output
process.

Hendrix [11] and Hendricks and McClain [12] studied interdeparture times of the output
from flow lines with several stages, single reliable machine at each stage, general processing
times, and finite intermediate buffers with possible blocking. They adopted simulation to
study the variance and correlation structure of the output process. For similar systems with
phase type service times, Tan and Lagershausen [30] obtain analytical results for mean and
variance ofN(t) for two-stage systems and propose algorithms to compute autocorrelations
of inter-departure times. Shin and Moon [25] studied the transient behavior of N(t) of a
two-stage flow line with a single unreliable machine at each stage and obtained expressions
for the variance and distribution of the time to nth departure.

Output variability is the result of factors that are internal or external to the organization.
Internal factors such as randomness in production, machine failure and repair are under the
control of the management and may be considered in the design stage. External factors
such as demand and supply variability are typically not under the control of management.
Understanding the effect of both internal and external sources of variability is crucial for
the success of a manufacturing operation. This paper contributes to the creation of tools to
describe the output process, including variability and autocorrelation structure, to manage a
two-stage flow line effectively.

In this paper, we consider a two-stage flow line with multiple machines at each stage
and a finite buffer for units processed in the first stage and waiting to be processed in the
second stage. When the finite buffer is full, one or more machines in the first stage may be
blocked (i.e., do not have space in the buffer to unload completed jobs). Similarly, when
the buffer is empty, one or more machines in the second stage may starve (i.e., do not have
jobs to process). Machines are prone to random failure and require regular repair. Ample
repair capacity is assumed, and machines do not wait for repair. We assume that machines
do not fail when blocked or starved. Abundant supply of jobs at the first stage and sufficient
demand (or storage space) for the output of the second stage are assumed. The throughput
rate of similar systems is studied by Liu et al. [18] and Shin and Moon [24]. We use ma-
trix analytic methods to develop algorithms to compute the moments, density function and
autocorrelations of the interdeparture times for completed jobs. Extensive numerical results
are presented and interpreted to provide insight into the impact of the number of machines
at each stage and the size of the buffer on the system behavior.

The main contribution of this paper is the complete characterization of the interdeparture
times. The algorithmic methodology proposed in this paper is easy to implement and flexible
enough to accommodate many variations to the basic model. Our analysis of the numerical
results also yielded valuable insights into the effects of buffer size, and numbers of machines
at the two stages, on the throughput rate and output variability. Numerical results indicate
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that the output stream of finished products approximates a Poisson process for buffer sizes
as small as one and the number of machines at each stage as small as two.

The remainder of the paper is organized as follows: A formal mathematical model for the
system is presented in Section 2, using which the output process is characterized in Section
3. Details of the algorithmic implementation are presented in Section 4. Numerical results
with a detailed discussion of the qualitative characteristics of the system are presented in
Section 5 followed by concluding remarks in Section 6.

In the following discussion, we assume that states of a Markov chain are arranged in
lexicographic order. Unless stated otherwise, subscripts 1 and 2 refer to the two stages
of production. The dimensions of vectors and matrices are generally clear from a given
mathematical expression and are provided only when necessary for clarity. A summary of
definitions for all relevant terms/symbols is provided in Table 1 for ready reference.

Table 1. Summary of Notation
Symbol Description

All vectors are denoted by bold letters (e.g., x, α, β).
Unless stated otherwise, are defined as row vectors.

e A vector of 1’s of appropriate dimension
0 A vector of 0’s of appropriate dimension
I An identity matrix
Q Infinitesimal generator describing system dynamics
x Row vector of steady state probabilities at an arbitrary time
y Row vector of steady state probabilities at departure instants
M Buffer size

N1, N2 Numbers of machines at stages 1 and 2
µ1, µ2 Production rates for each machine at stages 1 and 2
λ1, λ2 Failure rates for each machine at stages 1 and 2
θ1, θ2 Repair rates for each machine at stages 1 and 2
ϕ1, ϕ2 Design production rates at stages 1 and 2
ϕ Design throughput rate
ϕa Actual throughput rate
Zb1 Random variable describing the number of blocked machines at stage 1
Zs2 Random variable describing the number of starving machines at stage 2
Zbb Random variable describing the number of units in the buffer
U Random variable describing an interdeparture time

fU(u) Probability density function of interdeparture time
µu = E(U) Mean interdeparture time
σ2
u = V ar(U) Variance of interdeparture time

CVu Coefficient of variation of interdeparture time
r1 Lag 1 autocorrelation of the output stream of finished jobs
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2. Mathematical Model
The system consists of N1 [N2] identical machines at the first [second] stage of pro-

duction. There is storage space for M items processed at the first stage and waiting to be
processed at the second stage. Each machine at the first [second] stage can process jobs at
the rate of µ1 [µ2] items per unit time with exponentially distributed processing times. Each
machine at the first [second] stage of production alternates between exponentially distributed
operating time with parameter λ1 [λ2] and exponentially distributed down time (under re-
pair) with parameter θ1 [θ2]. Ample (infinite) repair capacity is assumed at both stages of
production so that there is no waiting for repair. This assumption is quite natural for man-
ufacturing systems where the operator of a machine is typically responsible for its routine
maintenance. Model modifications to eliminate this assumption are discussed in Section 6.

A machine is assumed to fail only when processing an item and the unit in-process re-
mains on the machine (or stored in a location different from the buffer). When a failed
machine is restored to operating condition, it continues processing the item that was in pro-
cess at the time of failure. Thus, when a machine fails or is restored to operating condition,
there will be no change in the number of units in the buffer. Modification to the model to in-
corporate possible scrapping of units in process at the time of a machine failure is discussed
in Section 6.

Let ϕ1 [ϕ2] denote the steady state production rate at stage 1 [stage 2], if it were operating
independently, and will be referred to as the design production rate at stage 1 [stage 2]. ϕ1

[ϕ2] can be obtained by recognizing that each machine in stage 1 [stage 2] alternates between
an exponential operating time with parameter λ1 [λ2], and an exponential repair time with
parameter θ1 [θ2]. From the properties of alternating renewal processes, the proportion of
time a machine at stage 1 [stage 2] will be operational is given by θ1

λ1+θ1

[
θ2

λ2+θ2

]
. Hence,

ϕ1 = N1µ1

(
θ1

λ1+θ1

)
, and ϕ2 = N2µ2

(
θ2

λ2+θ2

)
.

A two-stage flow line is defined as balanced if ϕ1 = ϕ2 and unbalanced otherwise.
For unbalanced systems, the stage with the lower production rate will be referred to as the
bottleneck stage. ϕ = min{ϕ1, ϕ2} yields the upper bound on the throughput rate from the
flow shop and will be referred to as design throughput rate of the flow line. ϕa, the actual
steady state throughput rate of the flow line, will be less than ϕ due to blocking and starving.
Understanding the effects of various system parameters on the difference between ϕ and ϕa

is a key objective of the paper.
A Markovian description of the system state is given by {k, C}, where k represents the

number of units in the buffer (referred to as level) and C describes the configuration of the
machines in the two stages. There will beM + 3 levels as follows:

• Levels 0 toM consisting of states with 0 toM units in the buffer and no blocking or
starving.

• Level 0s, consisting of states when the buffer is empty (k = 0) and one or more
machines at stage 2 are starving.

• Level Mb, consisting of states when the buffer is full (k = M ) and one or more
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machines at stage 1 are blocked.

Possible configurations (C) at each level are as follows:

• At levels 0 to M , configuration C can be described by the two tuple {i, j}, i and j
denoting the number of machines in operating condition and processing jobs (with the
rest of the machines under repair) at stages 1 and 2, respectively. n, the number of
states at each level k is given by all possible combinations of i (= 0, 1, 2, · · ·N1), and
j (= 0, 1, 2, · · ·N2), and is equal to (N1 + 1) ∗ (N2 + 1);

• At level 0s, configuration C is defined by the three tuple {i, j, js}, where i and j are
as defined above, and js is the number of starving machines in stage 2, meaning that
(j − js) machines are processing jobs. At level 0s,

– i can take values {0, 1, 2, · · ·N1},
– j can only take values {1, 2, · · ·N2}, because states with j = 0 will have no
starving machines and will be part of level 0, and

– js can take values {1, 2, · · · j}.
For each value of i, total number possible combinations of {j, js} is given by {N2 +

(N2 − 1) + · · · + 2 + 1}, which sums to N2∗(N2+1)
2

. ns, the total number of states at
level 0s is equal to N2∗(N2+1)∗(N1+1)

2
;

• At levelMb, configuration C is defined by the three tuple {i, ib, j}, where i and j are
defined as above, and ib is the number of machines blocked in stage 1, meaning that
(i− ib) machines are processing jobs. At levelMb,

– j can take values {0, 1, 2, · · ·N2},
– i can only take values {1, 2, · · ·N1}, because states with i = 0 will have no
blocked machines, and will be part of levelM , and

– ib can take values {1, 2, · · · i},
For each value of j, total number possible configurations of {i, ib} is given by {N1 +

(N1 − 1) + · · · + 2 + 1}, which sums to N1∗(N1+1)
2

. nb, the total number of states at
levelMb is equal to N1∗(N1+1)∗(N2+1)

2
.

Arranging the states in lexicographic order, dynamics of the system under study can be
described by a continuous time Markov chain (CTMC) with infinitesimal generator Q is
shown in Figure 1 with states partitioned into M + 3 levels. Matrices A0, A1 and A2 are
square matrices of order n. Matrices B0, B1 and B2 are of order (ns × n), (ns × ns) and
(n×ns) respectively. Similarly, matrices C0, C1, and C2 are of order (n×nb), (nb×nb) and
(nb×n) respectively. L, the dimension of matrixQ, is given by ns+M ∗n+nb. Complete
description of the structure of the matrices A0, A1, A2, B0, B1, B2, C0, C1, and C2 for N1=
2 and N2= 2 is provided in Appendix A (Figures A1-A9). All elements of Q are positive
except the diagonal elements, which are negative and are equal in magnitude to the sum of
all other elements in that row. We use the notation of displaying the diagonal elements by
an ”*,” as in matrices A1, B1, and C1 displayed in the Appendix.
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Q =

0s 0 1 2 · · M − 1 M Mb

0s B1 B0

0 B2 A1 A0

1 A2 A1 A0

2 A2 A1 A0

· · · ·
· · · ·

M − 1 A2 A1 A0

M A2 A1 C0

Mb C2 C1

Figure 1. Infinitesimal Generator.

Q1 =

0 1 2 3 · N1 − 1 N1

0 * N1θ1
1 λ1 * (N1 − 1)θ1
2 2λ1 * .
· · * ·

N1 − 2 . * 2θ1
N1 − 1 (N1 − 1)λ1 * θ1
N1 N1λ1 *

Figure 2. Infinitesimal Generator.

When there is no blocking or starving, the two stages function as independent subsys-
tems. Hence, A0, A1, and A2 can be expressed in terms of two independently operating
Markov chains describing the changes in values of i and j. Let Q1 and Q2 denote the in-
finitesimal generators for the two Markov chains. Q1 hasN1+1 states and has the structure
shown in Figure 2. Let µ1 denote the column vector of production rates corresponding to
the (N + 1) states of the generator Q1. µ1 = [0 µ1 2µ1 · · · (N1 − 1)µ1 N1µ1]

′, where the
superscript ′ indicates a transpose. Q2 and µ2 (not shown here) are of orderN2+1 and have
a similar structure with subscript 1 replaced by 2. Matrices A0, A1 and A2 can be expressed
in terms Q1, Q2, µ1 and µ2 as follows.

A1 = I1 ⊗ (Q2 −∆(µ2)) + (Q1 −∆(µ1))⊗ I2,

A0 = ∆(µ1)⊗ I2, and
A2 = I1 ⊗∆(µ2),

where I1 and I2 are identity matrices of size (N1 + 1) and (N2 + 1) respectively. For any
vector a, ∆(a) represents a diagonal matrix with elements given by the elements of a. ⊗
is the Kronecker product operator. It is, in general, not possible to express the boundary
matrices B0, B1, B2, C0, C1 and C2 in such a compact form.
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Let xk,C denote the unique equilibrium probability of the system being in state (k, C),
and let x denote a row vector with xk,C as elements arranged in the same order as the states
of the Markov chain. x is the unique vector satisfying the equations xQ = 0, and xe = 1,
where 0 and e respectively are column vectors of zeros and ones of size L.

To take advantage of the sparsity of Q, Gauss-Seidel iterative method is adopted in
the evaluation of x. Convergence of the iterative process can be accelerated by using the
aggregation/disaggregation approach discussed in Heyman and Goldsmith [13] and others.
Implementation details are presented in Section 4.

2.1. Measures of system behavior

Average, variability, and autocorrelation structure of the output stream of finished prod-
ucts from stage two are the focus of this paper. Section 3 details the algorithms to evaluate
these characteristics. Expressions for other useful measures of system behavior are presented
below in an easily implementable form, in terms of sub-vectors xk, k = 0s, 0, 1, · · ·M −
1,M , andMb. These subvectors are portions of the steady state probability vector x corre-
sponding to levels 0s, 0, 1, · · ·M − 1,M,Mb. xk, k = 0, 1, 2, ·M are of order n, and x0s and
xMb

are of order ns and nb respectively.

• Probability distribution ofZb1, the number of blockedmachines at stage 1, andE(Zb1),
the expected number of blocked machines at stage 1, are given by,

P (Zb1 = l) =

N1∑
i=l

N2∑
j=0

xMb
(i, l, j), l = 1, 2, · · ·N1,

P (Zb1 = 0) = 1−
N1∑
l=1

P (Zb1 = l),

E(Zb1) =

N1∑
l=1

l P (Zb1 = l).

• Probability distribution ofZs2, the number of starvingmachines at stage 2, andE(Zs2),
the expected number of starving machines at stage 2 are given by,

P (Zs2 = l) =

N1∑
i=0

N2∑
j=l

x0s(i, j, l), l = 1, 2, · · ·N2,

P (Zs2 = 0) = 1−
N2∑
l=1

P (Zb2 = l),

E(Zs) =

N2∑
l=1

l P (Zb2 = l).

• Probability distribution of Zbb, the number of units in the buffer, and E(Zbb) the ex-
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pected number of occupied buffer spaces are given by,

P (Zbb = 0) = x0se+ x0e,
P (Zbb = l) = xle, l = 1, 2, · · ·M − 1,

P (Zbb =M) = xMe+ xMb
e,

E(Zbb) =
M∑
l=1

l P (Zbb = l).

3. Output Process from the System
The first step in characterizing the stream of finished parts leaving the system is to de-

termine steady state departure instant probabilities (i.e., immediately after the instants of
job completions at stage 2). These probabilities, together with the infinitesimal generator
described in Figure 1 can be used to characterize the distribution of time between two suc-
cessive departures from the system, or the interdeparture time. This is further extended to
study the autocorrelation structure of interdeparture times.

3.1. Departure instant probabilities

Let t denote an arbitrary point in time when the system is operating under steady state
conditions. yk,C , the steady state probability that a departure leaves the system in state (k, C)
can be expressed as,

yk,C =
qk,C dt

γ dt
k = 0s, 0, 1, · · ·M − 1,M,Mb, ∨C,

where, (qk,C dt) is the probability of a departure in the interval (t, t+ dt) leaving the system
in state (k, C) at t+dt, and (γ dt) is the normalizing probability of a departure in the arbitrary
infinitesimal interval (t, t+ dt).

Under steady state conditions, possible departures from the system during the infinites-
imal interval (t, t + dt), and the corresponding changes in the system state are summarized
below.

• The system is in level 0s, (i.e., at least one of the machines at stage 2 is starving)
at time t, and a service completion occurs in stage 2 during the interval (t, t + dt).
After departure, the system remains at level 0s and the number of starving machines
is increased by 1.

• The system is in level 0 at time t, and a service completion occurs in stage 2 during
the interval (t, t+dt). After departure, the system moves from level 0 to level 0s, with
exactly one starving machine at stage 2.

• The system is in level k (1 ≤ k ≤ M) at time t, and a service completion occurs
at stage 2 during the interval (t, t + dt). After departure, the system moves to level
k− 1 because one of the units from the buffer is loaded into the machine with service
completion.
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• The system is in levelMb with exactly one blocked machine at stage 1 at time t, and a
service completion takes place in stage 2 during the interval (t, t+dt). After departure,
the system moves to levelM .

• The system is in levelMb withmore than one blockedmachines at stage 1 at time t, and
a service completion occurs in stage 2 during the interval (t, t+ dt). After departure,
the system remains in levelMb and the number of blocked machines is reduced by 1.

To simplify the evaluation of y, we split matrixB1 [C1] intoB11 andB12 [C11 andC12] where
B12 [C12] contains all the elements from B1 [C1] with µ2 (thus representing the rate at which
a service completions take place from the respective states) and B11 [C11] contains all other
elements. γ dt can be expressed as follows.

γ dt = x0sB12e dt+ x0B2e dt+ (
M∑
i=1

xiA2e) dt+ xMb
C2e dt+ xMb

C12e dt.

Let y denote the vector of departure instant probabilities arranged in the same manner as x.
The subvectors of y can be expressed as follows:

y0s = (x0sB12dt+ x0B2dt)/(γdt) = (x0sB12 + x0B2)/γ,

yi = (xi+1A2)/γ for i = 0, 1, 2, · · ·M − 1,

yM = (xMb
C2)/γ,

yMb
= (xMb

C12)/γ.

γ describes the equilibrium departure/throughput rate from the system and is equivalent to
ϕa, the actual throughput rate of the flow line, defined in Section 2.

3.2. Characteristics of the interdeparture times

When the system is operating in steady state, an interval between two successive de-
partures can be described as a phase type random variable by structuring the interval as the
time till absorption in a CTMC. This can be accomplished by modifying the infinitesimal
generator Q (Figure 1) by adding an absorbing state and diverting all transitions that lead
to departures from the system (i.e., transitions due to service completions at stage 2) to the
absorbing state. This idea is based on the original work by Neuts [20] and adopted by Rao
and Posner [21] to develop algorithms for the moments, density function, and correlation
structure of interdeparture intervals under steady state conditions.

Based on the detailed description of departure resulting transitions in Section 3.1, in-
finitesimal generator Q can be modified by adding an absorbing state D1 and described by
S∗
1 (Figure 3).
LetU denote the random variable describing an arbitrary inter-departure interval. Under

steady state conditions, U starts in one of the states in S∗
1 (excluding state D1) with prob-

abilities given by the vector y, and ends with absorption in state D1. U has a phase type
probability distribution with L (= ns + M ∗ n + nb) phases and representation (β1, T1)
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S∗
1 =

0s 0 1 2 · · M − 1 M Mb D1

0s B11 B0 B12e
0 A1 A0 B2e
1 A1 A0 A2e
2 A1 A0 A2e
· · · ·
· · · ·

M − 1 A1 A0 A2e
M A1 C0 A2e
Mb C11 C2e+ C12e
D1 0 0

=
[
T1 T0

1

0 0

]

Figure 3. Time between two departures (M > 1).

(Neuts [20]), where β1 = y and T1 is as defined in Figure 3. The density function and the
moments of U can be written down as below.

fU(u) = β1 e
T1u T0

1, u > 0 (1)
E(U) = µu = −β1T

−1
1 e, (2)

E(U2) = 2β1T
−2
1 e, (3)

V ar(U) = σ2
u = E(U2)− (E(U))2, (4)

where T0
1 = −T1e. The departure rate (i.e., the throughput rate) γ is given by 1/µu = ϕa.

Computing moments and density function of U respectively require the evaluation of
the inverse and exponential of T1. UnlessN1, N2 andM are small, T1 will be large, making
computing inverse or exponential of T1, inefficient and numerically hazardous. As with the
evaluation of x, iterative methods present a practical alternative. Implementation details are
presented in Section 4.

3.3. Autocorrelation of interdeparture times

The lag one autocorrelation of the output process can be studied by considering the
time to two successive departures, starting at a departure instant. Let U and V denote two
successive inter-departure intervals and let ψ2 = U + V . ψ2 can be described as the time to
absorption in a CTMC with infinitesimal generator S∗

2 with 2L + 1 states, partitioned into
two sets of L states and an absorbing stateD2, as displayed in Figure 4. Transition from the
first set of L states (U -states) to the second set of L states (V -states) indicates the end of U
and the start of V , and absorption into D2 indicates the end of V .

S∗
2 is displayed in partitioned form in Figure 5, where T1 describes the transitions during

the interdeparture interval and T2 describes the transition from U to V . T1 and T2 are square
matrices of dimension L.

ψ2 has a phase type probability distribution with 2L phases and representation (α2, S2).
α2 = [β1 0], indicating that ψ2 always starts with U . The joint density function of U and V
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S∗
2 =

0s 0 1 · M − 1M Mb 0s 0 1 · M − 1M Mb D2

0s B11B0 B12

0 A1A0 B2

1 A1A0 A2

· · · · 0
M − 1 A1 A0 A2

M A1 C0 A2

Mb C11 C2 C12

0s B11B0 B12e
0 A1A0 B2e
1 A1A0 A2e
· · · ·

M − 1 A1 A0 A2e
M A1 C0 A2e
Mb C11 C2e+ C12e
D2 0 0 0

Figure 4. Times between three successive departures.

S∗
2 =

[
S2 S0

2

0 0

]
=

 T1 T2 0
0 T1 T0

1

0 0 0

 .
Figure 5. Partitioned Matrix S∗

2 .

can be expressed as

fU,V (u, v) = [fU(u)] .
[
fV |U(v|u)

]
=

[
−β1 e

T1u T1 e
]
.
[
−β∗

2(u) e
T1v T1 e

]
. (5)

β2(u) = β1e
T1u T2, is the vector of probabilities of transitions from U -states to V -states,

given that U = u [20, 21]. β2(u), normalized by the sum of its elements (displayed as
β∗

2(u) in equation 5) represents the vector of initial probabilities for V , given U = u. By
recognizing that T2e = −T1e, we see that the sum of the elements of β2(u) is equal to
β2(u)e = β1e

T1u T2e = −β1 e
T1u T1 e = fU(u). fU,V (u, v) can now be written as,

fU,V (u, v) = −β2(u) e
T1v T1 e = −β1 e

T1u T2 e
T1v T1 e. (6)

It is easy to verify that fU,V (u, v) given by equation (6) leads to identical marginal distribu-
tions for U and V , consistent with equation (1). Using equation (6), E(UV ) can be obtained
as,

E(UV ) = −
∫ ∞

u=0

∫ ∞

v=0

u v β1 e
T1u T2 e

T1v T1 e du dv

12
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= −β1 T
−2
1 T2 T

−1
1 e,

from which r1,the autocorrelation at lag 1, can be obtained as follows.

r1 =
Cov(UV )√

V ar(U)
√
V ar(V )

=
E(UV )− E(U)E(V )√
V ar(U)

√
V ar(V )

=
E(UV )− µ2

u

σ2
u

. (7)

Details of the numerical implementation of equations (2), (3), (4), and (7) to computeE(U),
V ar(U), and r1 are discussed in Section 4.

Autocorrelations at higher lags can be obtained by considering the total time for corre-
spondingly increased number of departures. For example, r2, the lag 2 autocorrelation, can
be obtained by considering the time to 3 successive departures, starting at a departure instant.
Let U , V andW denote three successive inter-departure intervals. ψ3 = U +V +W , can be
described as the time to absorption in a CTMCwith 3L+1 states and infinitesimal generator
S∗
3 displayed in partitioned form in Figure 6.

S∗
3 =

[
S3 S0

3

0 0

]
=


T1 T2 0 0
0 T1 T2 0
0 0 T1 T0

1

0 0 0 0

 .
Figure 6. Partitioned Matrix S∗

3 .

ψ3 has a phase type probability distribution with 3L phases and representation (α3, S3),
withα3 = [β1 0 0] = [y 0 0]. The joint density function of U , V andW can be expressed as

fU,V,W (u, v, w) = [fU(u)] .
[
fV |U(v|u)

]
.
[
fW |U,V (w|u, v)

]
=

[
−β1 e

T1u T1 e
]
.
[
−β∗

2(u) e
T1v T1 e

]
.
[
−β∗

3(u, v) e
T1w T1 e

]
=

[
−β1 e

T1u T2 e
T1v T1 e

]
.
[
−β∗

3(u, v) e
T1w T1 e

]
.

β∗
3(u, v) is the normalized version of β3(u, v) = β1 e

T1u T2 e
T1v T2, the vector of proba-

bilities of transitions from U -states to W -states (through the V -states), given that U = u
and V = v. Using T2e = −T1e, the sum of elements of β3(u) can be expressed as
β3(u, v) e = β1 e

T1u T2 e
T1v T2 e = −β1 e

T1u T2 e
T1v T1 e. fU,V,W (u, v, w) can now

be written as,
fU,V,W (u, v, w) = −β3(u, v) e

T1w T1 e = −β1 e
T1u T2 e

T1v T2 e
T1w T1 e. (8)

Using equation (8), E(UW ) is obtained as,

E(UW ) = −
∫ ∞

u=0

∫ ∞

v=0

∫ ∞

w=0

u w β1 e
T1u T2 e

T1v T2 e
T1w T1 e du dv dw

= −β1 T
−2
1 T2 T

−1
1 T2 T

−1
1 e.

r2, the autocorrelation at lag 2 can be obtained as r2 = [E(UW ) − µ2
u]/σ

2
u. Extension to

higher order autocorrelations is tedious but routine. In the interests of brevity, we limit the
computations to autocorrelation at lag 1 in this paper.

13
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4. Algorithmic Considerations
In this Section, we provide detailed descriptions of the numerical procedures used in

computing the system characteristics in the sequence in which the computations need to be
carried out.

4.1. Computation of x

x is the unique solution of the equation xQ = 0 and xe = 1 and can be evaluated using
the iterative scheme described above. After each iteration, the vector x needs to be scaled so
that the elements of the vector sum to 1 to satisfy equation xe = 1.

The number of iterations required for convergence can be greatly reduced by adopting
the aggregation/disaggregation approach discussed in Heyman and Goldsmith [13] and oth-
ers. xQ = 0 can be expressed as follows.

x0sB1 + x0B2 = 0, (9)
x0sB0 + x0A1 + x1A2 = 0, (10)

xk−1A0 + xkA1 + xk+1A2 = 0, k = 1, 2, · · ·M − 1, (11)
xM−1A0 + xMA1 + xMb

C2 = 0, (12)
xMC0 + xMb

C1 = 0. (13)

Post-multiplying equations (10-14) by e and simplifying, we obtain

x0sb0 = x0 (e1 ⊗ µ2) , (14)
xi−1 (µ1 ⊗ e2) = xi (e1 ⊗ µ2) , i = 1, 2, 3, · · ·M, (15)
xM (µ1 ⊗ e2) = xMb

c2, (16)

where, b0 = B0e and c2 = C2e and e1 and e2 are column vectors of 1s of dimension N1

are N1 respectively. In the implementation of the Gauss-Seidel method, at the end of each
iteration, subvectors of x can be individually scaled to satisfy the macro balance equations
(14-16) prior scaling them to satisfy xe = 1. Specific details of computational efficiency are
presented in Section 5.2. Measure of system behavior (Section 2.1) and y (Section 3.1) can
be computed using vector x.

4.2. Computation of E(U), V ar(U), and r1
Inversion of matrix T1 required by the direct implementation of equations (2), (3), (4),

and (7) in computingE(U), V ar(U), and r1 can be avoided by structuring the computations
as solutions of sparse systems of equations as follows.

1. E(U) in equation (2) can be expressed as ω1e and ω1(= −yT−1
1 ) can be computed

by solving the system of equations ω1T1 = −y.
2. E(U2) in equation (3) can be expressed as 2ω2e andω2(= −ω1T

−1
1 ) can be computed

by solving the system of equations ω2T1 = −ω1. V ar(U) can be computed using
equation (4).

14



Queueing Models and Service Management

3. r1 can be computed as follows:
• Define ω4 = ω3T

−1
1 , where ω3 = ω2T2.

• ω4 can be computed by solving the system of equations ω4T1 = ω3.
• Using equation (4), E(UV ) can be computed as−ω4e. r1 can then be computed
using equation (7).

Vectors ω1, ω2, ω3, and ω4 are typically very large, but they can be computed efficiently
using iterative methods and exploiting the sparsity of matrices T1 and T2. High-precision
computation is recommended to avoid loss of significance due to the successive evaluation
of ω1, ω2, ω3 and ω4.

4.3. Computation of the density function fU(u)

Efficient and numerically stable algorithms for the computation of the density function
fU(u) are discussed in Section 4.3.

Computing the probability density function of U using equation (1) requires the evalua-
tion of eT1u. The presence of negative diagonal elements in T1 makes the direct computation
of eT1u numerically hazardous and is not recommended. For computational stability and er-
ror control, the recommended method is uniformization (Latouche and Ramaswami [15]),
where computations are performed in terms of a corresponding discrete time Markov chain,
embedded in a Poisson process with rate τ equal to the absolute value of the most negative
diagonal element in T1. Let the matrixK be defined as,

K =
1

τ
S∗
1 + I =

[
1
τ
T1 + I 1

τ
T0

1

0 1

]
=

[
P P0

0 1

]
,

where S∗
1 is as defined in Figure 3. We then have [15],

eT1u =
∞∑
k=0

e−τu (τu)
k

k!
P k.

The density functions can be expressed as,

fU(u) = y eT1u T0
1 =

∞∑
k=0

e−τu (τu)
k

k!
y P k T0

1.

This equation can be expressed as follows for efficient algorithmic implementation.

fU(0) = yT0
1,

fU(u) =
∞∑
k=0

akψkT0
1 for u > 0,

ψ0 = y, and a0 = e−τu

ψk = ψk−1P, and ak = ak−1(
τu

k
), for k = 1, 2, · · · .

15
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Only two vectorsψk need to be stored as they are calculated recursively and the scalar values
of fU(u) are accumulated. In the present case, the matrix P and vector P0 are very sparse so
that the computations can be organized efficiently without actually generating and storing P
and P0 .

Evaluation of fU(u) would require the truncation of an infinite series. The truncation
point k = k∗, can be determined such that

∑k∗

k=0
e−τu(τu)k

k!
≤ 1 − ϵ. This will ensure that

the overall error in the computation of fU(u) will be bounded by ϵ. SinceK is a probability
matrix, the elements of P , and its powers, are positive and are uniformly bounded by 1.

5. Summary of Numerical Results
This Section presents observations on system behavior based on extensive numerical

results from the implementation of the algorithms developed in this paper. Sections 5.1 and
5.2 present details of the parameter values used in implementing the algorithms, and some
notes on computations. Section 5.3 presents observations on the system behavior based on
the numerical results.

5.1. Values of parameters used

In order to limit a potentially large parameter space, we decided to keep the ratios λ1

θ1

and λ2

θ2
fixed at 10. Values of λ1 and λ2 are chosen from 1, 5, and 10, and the values of θ1

and θ2 are computed using the fixed ratio. This implies that, on average, each machine is
operational 90.91% (= 10

10+1
) and does not represent a significant loss of generality because

decreasing [increasing] the failure rate and increasing [decreasing] the repair rate have the
same effect on the design production rates ϕ1 and ϕ2. With a fixed ratio of λ1

θ1
[λ2

θ2
], larger

values of λ1 [λ2] imply that stage 1 [stage 2] machines fail more often and are repaired
more quickly, relative to smaller values of λ1 [λ2] with design production rates ϕ1 and ϕ2

remaining unaffected.
To enable easy distinction and comparison of balanced and unbalanced flow lines, we

specify ϕ1 and ϕ2 (each chosen from the five values of 80, 90, 100, 110, and 120) instead of
specifying µ1 and µ2. ϕ1 = ϕ2 yields a balanced flow line, and ϕ1 > ϕ2 [ϕ1 < ϕ2 ] yields
an unbalanced flow line with higher [lower] production rate at stage 1. Values of N1 and
N2 are chosen from the four values of 1, 2, 5, and 10, and µ1 and µ2 are computed using the
relationships ϕ1 = N1µ1

(
θ1

λ1+θ1

)
, and ϕ2 = N2µ2

(
θ2

λ2+θ2

)
. Values ofM are chosen from

the eight values of 0, 1, 2, 3, 5, 10, 20, and 50.
A representative subset of results are summarized in Tables 2-5 and Figures 7-16. For

simplicity in presentation, Tables 2 and 3 present results for systems with N1 = N2 and
λ1 = λ2. Additional results for systems with N1 ̸= N2 and λ1 ̸= λ2 are presented in Tables
4 and 5. Summary statements describing the effects of various parameters on the system
behavior are based on the understanding gained from the complete set of runs.
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Table 2. Departure Rate and Average Buffer contents.
(N1 = N2 = N,M = 5, λ1 = λ2 = 1, θ1 = θ2 = 10)

Departure Rate (ϕa) E(Zbb = Number in buffer)
M ↓ N = 1 N = 2 N = 5 N = 10 N = 1 N = 2 N = 5 N = 10

ϕ1 = 100 and ϕ2 = 100

0 64.879 73.983 82.882 87.707 0.000 0.000 0.000 0.000
1 72.114 78.422 85.076 88.936 0.500 0.500 0.500 0.500
2 76.443 81.341 86.717 89.927 1.000 1.000 1.000 1.000
3 79.355 83.434 87.998 90.745 1.500 1.500 1.500 1.500
5 83.088 86.292 89.890 92.025 2.500 2.500 2.500 2.500
10 87.749 90.158 92.674 94.050 5.000 5.000 5.000 5.000
20 91.661 93.556 95.242 96.044 10.000 10.000 10.000 10.000
50 95.596 96.800 97.675 98.026 25.000 25.000 25.000 25.000

ϕ1 = 100 and ϕ2 = 110

0 67.916 77.392 86.575 91.467 0.000 0.000 0.000 0.000
1 75.433 81.979 88.807 92.684 0.456 0.442 0.413 0.380
2 79.904 84.976 90.460 93.653 0.895 0.869 0.810 0.743
3 82.892 87.108 91.739 94.443 1.322 1.283 1.193 1.093
5 86.682 89.986 93.598 95.652 2.138 2.077 1.921 1.750
10 91.306 93.784 96.229 97.465 4.011 3.890 3.540 3.178
20 95.044 96.936 98.410 99.002 7.285 6.926 6.042 5.262
50 98.503 99.406 99.822 99.917 14.737 12.577 9.591 7.767

ϕ1 = 110 and ϕ2 = 100

0 67.916 77.392 86.575 91.467 0.000 0.000 0.000 0.000
1 75.433 81.979 88.807 92.684 0.545 0.558 0.587 0.621
2 79.904 84.976 90.460 93.653 1.105 1.131 1.190 1.257
3 82.892 87.108 91.739 94.443 1.678 1.717 1.807 1.907
5 86.682 89.986 93.598 95.652 2.862 2.923 3.079 3.250
10 91.306 93.784 96.229 97.465 5.989 6.110 6.460 6.822
20 95.044 96.936 98.410 99.002 12.715 13.074 13.958 14.738
50 98.503 99.406 99.822 99.917 35.263 37.423 40.409 42.233
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Table 3. Interdeparture time properties.
(N1 = N2 = N,M = 5, λ1 = λ2 = 1, θ1 = θ2 = 10)

Coefficient of variation (CVu) Autocorrelation at lag 1 (r1)
M↓ N = 1 N = 2 N = 5 N = 10 N = 1 N = 2 N = 5 N = 10

ϕ1 = 100 and ϕ2 = 100

0 1.500 1.022 0.988 0.992 -0.048 -0.018 -0.015 -0.009
1 1.629 1.055 0.996 0.995 -0.023 0.008 -0.006 -0.006
2 1.696 1.074 1.002 0.998 -0.012 0.022 0.000 -0.003
3 1.736 1.085 1.006 0.999 -0.007 0.030 0.004 -0.001
5 1.778 1.099 1.011 1.002 -0.003 0.039 0.008 0.001
10 1.803 1.110 1.017 1.005 0.001 0.046 0.014 0.004
20 1.789 1.113 1.020 1.008 0.002 0.049 0.017 0.007
50 1.745 1.110 1.022 1.009 0.002 0.049 0.018 0.008

ϕ1 = 100 and ϕ2 = 110

0 1.524 1.025 0.988 0.992 -0.047 -0.017 -0.014 -0.009
1 1.656 1.058 0.997 0.995 -0.022 0.009 -0.005 -0.005
2 1.726 1.077 1.002 0.998 -0.012 0.023 0.000 -0.003
3 1.768 1.089 1.006 1.000 -0.007 0.031 0.004 -0.001
5 1.813 1.102 1.011 1.002 -0.002 0.040 0.009 0.001
10 1.848 1.115 1.017 1.005 0.001 0.048 0.014 0.005
20 1.851 1.120 1.020 1.007 0.003 0.052 0.017 0.007
50 1.835 1.121 1.022 1.008 0.004 0.053 0.019 0.008

ϕ1 = 110 and ϕ2 = 100

0 1.523 1.026 0.989 0.993 -0.046 -0.017 -0.013 -0.008
1 1.653 1.058 0.998 0.997 -0.021 0.009 -0.005 -0.004
2 1.721 1.077 1.003 0.999 -0.012 0.023 0.001 -0.002
3 1.760 1.088 1.007 1.001 -0.007 0.031 0.005 0.000
5 1.798 1.101 1.012 1.003 -0.002 0.039 0.009 0.002
10 1.811 1.110 1.018 1.007 0.001 0.046 0.015 0.006
20 1.778 1.111 1.021 1.009 0.002 0.048 0.017 0.008
50 1.712 1.106 1.023 1.010 0.001 0.047 0.019 0.009
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Table 4. Effect of N1 and N2.
M = 5, λ1 = λ2 = 1, ϕ1 + ϕ2 = 200

(N1, N2) ϕ1 = 90, ϕ2 = 110 ϕ1 = 100, ϕ2 = 100 ϕ1 = 110, ϕ2 = 90

↓ ϕa E(Zbb) CVu r1 ϕa E(Zbb) CVu r1 ϕa E(Zbb) CVu r1

(1, 1) 80.989 1.761 1.769 -0.002 83.088 2.500 1.778 -0.003 80.989 3.240 1.739 -0.002
(1, 2) 82.911 1.638 1.448 0.032 84.697 2.444 1.402 0.036 82.062 3.232 1.333 0.040
(2, 1) 82.062 1.768 1.484 0.006 84.697 2.556 1.537 0.001 82.911 3.362 1.555 -0.001
(2, 2) 83.943 1.639 1.099 0.040 86.292 2.500 1.099 0.039 83.943 3.361 1.096 0.039
(2, 5) 85.763 1.308 1.047 0.032 88.172 2.298 1.034 0.023 85.235 3.289 1.026 0.018
(5, 2) 85.235 1.711 1.058 0.024 88.172 2.702 1.070 0.029 85.763 3.692 1.082 0.035
(5, 5) 86.830 1.349 1.012 0.010 89.890 2.500 1.011 0.008 86.830 3.651 1.015 0.011
(2, 10) 86.889 1.002 1.030 0.025 89.497 2.085 1.018 0.014 86.138 3.203 1.011 0.009
(10, 2) 86.138 1.798 1.055 0.021 89.497 2.915 1.072 0.029 86.889 3.998 1.086 0.037
(10, 10) 88.261 1.061 1.003 0.003 92.025 2.500 1.002 0.001 88.261 3.940 1.006 0.004

Table 5. Effect of λ1 and λ2.
(N1 = 2, N2 = 2,M = 5, λ1/θ1 = λ2/θ2 = 10)

ϕ1=90, ϕ2=110 ϕ1=100, ϕ2=100 ϕ1=100, ϕ2=90
λ1 = 1 λ1 = 5 λ1 = 10 λ1 = 1 λ1 = 5 λ1 = 10 λ1 = 1 λ1 = 5 λ1 = 10

ϕa

λ2= 1 83.943 84.386 84.519 86.292 87.011 87.213 83.943 84.733 84.933
λ2= 5 84.733 85.237 85.390 87.011 87.829 88.054 84.386 85.237 85.444
λ2= 10 84.933 85.444 85.600 87.213 88.054 88.284 84.519 85.390 85.600

CVu

λ2= 1 1.099 1.058 1.050 1.099 1.068 1.063 1.096 1.078 1.076
λ2= 5 1.075 1.031 1.024 1.063 1.030 1.026 1.053 1.033 1.031
λ2= 10 1.067 1.023 1.015 1.052 1.018 1.014 1.039 1.019 1.017

r1

λ2= 1 0.040 0.020 0.016 0.039 0.025 0.022 0.039 0.031 0.031
λ2= 5 0.031 0.009 0.004 0.022 0.006 0.003 0.016 0.007 0.006
λ2= 10 0.027 0.004 -0.001 0.016 -0.001 -0.004 0.008 -0.001 -0.003
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5.2. Notes on computations

The aggregation/disaggregation approach used in the iterative solutions dramatically re-
duced the number of iterations relative to direct iterations inmost cases. The ratio of the num-
ber of iterations required to achieve the desired degree of convergence with direct iterations
to the corresponding number of iterations using the aggregation/disaggregation approach,
ranged from approximately 1 (indicating almost no improvement) to 151.43 (reduction of
number of iterations from 4543 to 30). The average ratio for all the runs was 43.39, indicat-
ing the significant computational efficiency due to the use of the aggregation/disaggregation
method. The ratio was higher for smaller values ofM and decreased with increasing value
ofM . Convergence of the iterative methods for computing ω1, ω2, ω3, and ω4 was faster than
the convergence for vector x. This was not surprising because in these iterations, probability
mass flows only in one direction.

5.3. Description of system behavior

Since the focus of this paper is on the departure process, the steady state system behavior
is described in terms of the mean (µu), the coefficient of variation (CVu), the lag 1 autocor-
relation (r1), and the density function of interdeparture times within the chosen ranges of
parameter values. Sections 5.3.1 and 5.3.2 summarize the effects of various system param-
eters on the departure rate, the average buffer contents, the coefficient of variation, and lag
1 autocorrelation of the interdeparture time. Section 5.3.3 discusses the interdeparture time
density function.

5.3.1. Throughput rate and average buffer contents

Table 2 provides a comprehensive summary of the effects ofM , N1 and N2 on ϕa and
E(Zbb), for balanced (ϕ1 = ϕ2 = 100) and unbalanced systems (ϕ1 = 100 and ϕ2 = 110;
and ϕ1 = 110 and ϕ2 = 100). As M increases, throughput rate (ϕa) increases, gradually
approaching ϕ. This is expected because the buffer decouples the two stages of manufac-
ture and increases the throughput rate by reducing the likelihood of blocking in stage 1 and
starving in stage 2. The marginal improvement in ϕa decreased with increasing M , with
most of the benefit obtained for values ofM under 5. IncreasingN1 and/orN2 also resulted
in similar improvement in ϕa, because splitting the capacity among several smaller capacity
machines moderates the inherent randomness of the production process, resulting in an in-
creased throughput rate. As withM , the marginal benefit of increasingN1 andN2 decreases
with increasing values ofN1 andN2, with most of the benefit obtained whenN1 andN2 are
increased from 1 to 2. Improvements in ϕa due to increasingM , N1, and N2 are additive.

Additional details on the influence of N1 and N2 individually are provided in Table 4
and Figures 7-10. Increasing either N1 or N2 resulted in increases in throughput rate, with
progressively decreasing marginal improvement. For unbalanced systems, increasing the
number of machines at the non-bottleneck stage yielded marginally better improvement in
throughput rate compared to corresponding increase at the bottleneck stage. For a given
total production capacity between the two stages of production, balanced flow lines have a
slightly higher throughput rate (Table 2), because the upper bound on the throughput rate is
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Figure 7. Effect ofM and N1 on ϕa,
ϕ1 = 100, ϕ2 = 90, N2 = 2.

Figure 8. Effect ofM and N2 on ϕa,
ϕ1 = 90, ϕ2 = 100, N2 = 2

Figure 9. Effect ofM and N1 on ϕa,
λ1 = λ2 = 1, θ1 = θ2 = 10,
ϕ1 = 100, ϕ2 = 100, N2 = 2.

Figure 10. Effect ofM and N2 on ϕa,
λ1 = λ2 = 1, θ1 = θ2 = 10,
ϕ1 = 100, ϕ2 = 100, N1 = 2.

determined by the bottleneck stage in the flow line.
For the two unbalanced flow lines displayed in Table 2 (with values of ϕ1 and ϕ2 re-

versed), throughput rates were identical, even though the values of E(Zbb) (and CVu and r1
in Table 3) are different. This outcome is the result of the choice of λ1 = λ2. When λ1 ̸= λ2
(and ϕ1 and ϕ2 values are reversed), throughput rates were different (very slightly) for the
two unbalanced systems (Table 5). Larger λ for the non-bottleneck stage had a slightly larger
impact than a corresponding value for λ for the bottleneck stage.

The probability distribution of number in buffer (Zbb) varied predictably. When ϕ1 > ϕ2

probability mass is concentrated at the higher buffer values, resulting in a smaller probability
of starving, larger probability of blocking, and E(Zbb) > 0.5M . When ϕ1 < ϕ2, more
probability mass is concentrated at the lower values of M resulting in smaller probability
of blocking, larger probability of starving, and E(Zbb) < 0.5M . For balanced systems,
the probability mass is evenly distributed and E(Zbb) ≈ 0.5M . In the interests of brevity,
probability distributions of Zbb are not presented in this paper.

5.3.2. Coefficient of variation and lag 1 autocorrelation of interdeparture time

In all cases, except when N1 = 1 and/or N2 = 1, the coefficient of variation of the
interdeparture time (CVu) is very close to 1. When N1 = N2 = 1 (Table 3) or when N1 = 1
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or N2 = 1 (Table 4), (displayed in bold italics), CVu ranged between 1.5 to 1.8. CVu
decreased dramatically to a value close to 1 whenN1 andN2 increased to 2. Further increases
inN1 orN2 resulted only in small reductions inCVu. IncreasingM did not have a significant
effect on CVu.

When λ1 ̸= λ2, the coefficient of variation (CVu) and the lag 1 autocorrelation (r1) did
not differ significantly relative to systemswith λ1 = λ2 (Table 5). Larger λ for the bottleneck
stage had a slightly larger impact than a corresponding increase in λ for the non-bottleneck
stage.

For large values ofM , a small increase in CVu is observed (Table 3). Detailed analysis
(not presented here for brevity) indicated that while both µu and V aru decreased with in-
creasingM , the rate of decrease in µu at large values ofM was smaller than corresponding
decrease in V aru, resulting in the small increase in CVu.

Formost of the parameter space considered, the lag 1 autocorrelation of the inter-departure
time are positive and very close to zero. For smaller values ofM , some negative autocorre-
lations are observed. Given the extremely small magnitude, this observation is not of much
practical significance.
5.3.3. Interdeparture time density function

WhenN1 andN2 are greater than 1, lag 1 autocorrelation of the interdeparture times are
very close to zero, and the values of CVu are very close to one, suggesting an approximation
of the output process by a Poisson process.

Interdeparture time density functions were graphed for a wide range of parameter values,
and visually compared with the exponential density function with a rate equal to ϕa. Except
when N1 or N2 are equal to 1, there is a close agreement between the interdeparture time
density function and the corresponding exponential density function. This approximation
gets better as the values of N1 and N2 increase. A small subset of the graphs analyzed are
presented in Figures 11-16, where the horizontal scale describing the interdeparture time is
displayed only up to 0.05 to highlight the contract between the two density functions. This
means that for systems with the numbers of machines at each stage as low as 2, the output
process can be effectively approximated by a Poisson process. This observation provides a
strong justification for several earlier successful approximations of flow line models based
on decomposition methods.

6. Concluding Remarks
This paper considers a two-stage flow line with multiple unreliable machines at each

stage and finite intermediate buffer and develop algorithms to fully characterize the depar-
ture process in terms of mean, variance, density function, and lag 1 autocorrelation of the
interdeparture times. The following are some key observations in the paper which offer
managerial insight in evaluating economic implications at the design and operational stages.

• The output process is a very close approximation to a Poisson process for buffer sizes
as small as 1, and the number of machines at each stage as small as 2. This is a very
meaningful and valuable observation in the study of flow lines with several stages
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Figure 11. IDT Density Function 1. Figure 12. IDT Density Function 2.

Figure 13. IDT Density Function 3. Figure 14. IDT Density Function 4.

Figure 15. IDT Density Function 5. Figure 16. IDT Density Function 6.

23



© Rao, Brah

where output from one stage forms the input to the next stage.
• The benefit due to additional buffer capacity between two stages drops very quickly
after the initial few spaces. This observation is valuable in allocating limited buffer
capacity among several stages of a multistage manufacturing process.

• For a given capacity at any stage, having several machines rather than a single ma-
chine with the same total capacity at either stage increases throughput rate and reduces
process variability. Splitting the capacity among several machines at stage 2 yields
marginally better improvement in system performance than a similar change in stage
1. This insight is particularly useful in designing flow lines.

The algorithmic methodology developed in this paper is easy to implement and fully
exploits the special structure of the model. It also permits easy incorporation of minor vari-
ations to the basic model. The following subsections present two examples.

6.1. Limited repair resources

The model presented in this paper assumes ample repair capacity at each stage of pro-
duction so that repair of failed machines starts immediately after failure and with no waiting.
The methodology proposed in this paper can be adapted to systems with limited repair re-
sources, as long as each stage of production has dedicated repair facilities. Modification to
the model when only one machine at each stage can be repaired at a time is presented be-
low. Extension to systems where more than one machine can be repaired at a time (at each
stage) will be obvious from the following. Considering the submatrices for the example with
N1 = 2 and N2 = 2, shown in the Appendix, Matrix A1 needs to be modified, as shown
in Figure 17. Matrices A0 and A2 are unaffected. Similar adjustments need to be made for
matrices at boundary level 0s andMb.

A1 =

1 2 3 4 5 6 7 8 9

(0,0) 1 * θ2 θ1
(0,1) 2 λ2 * θ2 θ1
(0,2) 3 2λ2 * θ1
(1,0) 4 λ1 * θ2 θ1
(1,1) 5 λ1 λ2 * θ2 θ1
(1,2) 6 λ1 2λ2 * θ1
(2,0) 7 2λ1 * θ2
(2,1) 8 2λ1 λ2 * θ2
(2,2) 9 2λ1 2λ2 *

Figure 17. Matrix A1 when repair resources are limited.
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6.2. Scrapping of units

The model presented in this paper assumes that when a machine fails, the unit in-process
remains on the machine, and when the machine is restored to operating condition, the ma-
chine will continue processing the item that was in process at the time of failure. Shin and
Moon [26] developed approximations for the throughput rate with phase-type processing
times and three possible service-failure interactions, namely, resume interrupted service;
restart service as a new unit; or scrap the unit. With exponential service times, the first two
interactions will be identical. A more general version of the third type of interaction was
considered by Shanthikumar and Tien [22], where the unit in-process at the time of failure is
scrapped with a certain probability. This variation can easily be incorporated into the model.
Let a be the probability that a unit in service at the time of failure needs be scrapped and let
b = 1−a be the probability with which the unit need not be scrapped. Because service times
are exponential, this change will have no effect on the state of the system for failures at stage
1. In stage 2, when a failed machine is restored to operating condition, the buffer contents
will decrease by 1 with probability a and remain the same with probability b. For the exam-
ple matrices shown in the Appendix, this change can be easily incorporated by modifying
matrices A1 and A2 as shown in Figures 18 and 19. Matrix A0 remains the same. Similar
adjustments need to be made for matrices at boundary level 0s andMb.

A1 =

1 2 3 4 5 6 7 8 9

(0,0) 1 * 2bθ2 2θ1
(0,1) 2 λ2 * bθ2 2θ1
(0,2) 3 2λ2 * 2θ1
(1,0) 4 λ1 * 2bθ2 θ1
(1,1) 5 λ1 λ2 * bθ2 θ1
(1,2) 6 λ1 2λ2 * θ1
(2,0) 7 2λ1 * 2bθ2
(2,1) 8 2λ1 λ2 * bθ2
(2,2) 9 2λ1 2λ2 *

Figure 18. Matrix A1 with scrapping of units at stage 2.

6.3. Implications of model assumptions to real-world applications

One of the key assumptions in this and many other papers on the topic, is the exponential
distribution of the processing times of jobs and operating and repair times of machines. This
assumption is motivated by the Markovian property and the resulting analytical tractability
offered by exponential distribution.

Case studies from the automotive industry (Inman [14], Colledani, Ekvall, Lundholm,
Moriggi, Polato, and Tolio [5]) and water bottling production lines (Assaf [2]) suggest that
exponential assumption is reasonable for times between failures and times to repair. The
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A2 =

1 2 3 4 5 6 7 8 9

(0,0) 1 0 2aθ2
(0,1) 2 µ2 aθ2
(0,2) 3 2µ2

(1,0) 4 0 2aθ2
(1,1) 5 µ2 aθ2
(1,2) 6 2µ2

(2,0) 7 0 2aθ2
(2,1) 8 µ2 aθ2
(2,2) 9 2µ2

Figure 19. Matrix A2 with scrapping of units at stage 2.

evidence, however, is not so conclusive for processing times. In many fully automatic flow
lines, processing times have a finite minimum with very small allowance for variation and
are therefore largely deterministic. There are, however, situations where flow line process-
ing times are more appropriately modeled as random variables. One example of potential
variability in processing times is a flow line employed in producing customized jobs (e.g.,
automotive flow line where two and four door models are manufactured on the same line).
Another example is the process drift discussed by Chincholkar and Herrmann [4], where
process parameters degrade over time, requiring additional inspections and rework, leading
to variability in processing times. In some manufacturing processes, products make several
(random number of) passes through work centers or rework loops (e.g., painting shop in an
automotive facility) adding to the variability of processing time (Li [16]). Empirical stud-
ies (Inman [14], Colledani, Ekvall, Lundholm, Moriggi, Polato, and Tolio [5]) show that
exponential distribution is often a poor fit for processing times. Despite this observation,
Inman [14] states that models using this assumption do not necessarily lead to inaccurate
results. The user must exercise caution and use the results after evaluating the sensitivity of
assumptions. Erlang (sum of exponential variables yielding coefficients of variation < 1)
and hyperexponential (linear combination of exponential variables yielding coefficients of
variation > 1) distributions, which retain some analytical tractability, offer reasonable al-
ternatives. This is supported by [14] and [5], where Erlang distribution appears to fit some
processing times well.
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Appendix

A. Detailed Description of Submatrices of Q (Figure 1) (N1 = 2, N2 = 2)

A0 =

1 2 3 4 5 6 7 8 9

(0,0) 1 0
(0,1) 2 0
(0,2) 3 0
(1,0) 4 µ1

(1,1) 5 µ1

(1,2) 6 µ1

(2,0) 7 2µ1

(2,1) 8 2µ1

(2,2) 9 2µ1

Figure A1. Matrix A0.

A1 =

1 2 3 4 5 6 7 8 9

(0,0) 1 * 2θ2 2θ1
(0,1) 2 λ2 * θ2 2θ1
(0,2) 3 2λ2 * 2θ1
(1,0) 4 λ1 * 2θ2 θ1
(1,1) 5 λ1 λ2 * θ2 θ1
(1,2) 6 λ1 2λ2 * θ1
(2,0) 7 2λ1 * 2θ2
(2,1) 8 2λ1 λ2 * θ2
(2,2) 9 2λ1 2λ2 *

Figure A2. Matrix A1.
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A2 =

1 2 3 4 5 6 7 8 9

(0,0) 1 0
(0,1) 2 µ2

(0,2) 3 2µ2

(1,0) 4 0
(1,1) 5 µ2

(1,2) 6 2µ2

(2,0) 7 0
(2,1) 8 µ2

(2,2) 9 2µ2

Figure A3. Matrix A2.

B0 =

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(0,11):1
(0,21):2
(0,22):3
(1,11):4 µ1

(1,21):5 µ1

(1,22):6
(2,11):7 2µ1

(2,21):8 2µ1

(2,22):9
Figure A4. Matrix B0.

B1 =

(0,11) (0,21) (0,22) (1,11) (1,21) (1,22) (2,11) (2,21) (2,22)

(0,11):1 * θ2 2θ1
(0,21):2 λ2 * µ2 2θ1
(0,22):3 * 2θ1
(1,11):4 λ1 * θ2 θ1
(1,21):5 λ1 λ2 * µ2 θ1
(1,22):6 λ1 µ1 * θ1
(2,11):7 2λ1 * θ2
(2,21):8 2λ1 λ2 * µ2

(2,22):9 2λ1 2µ1 *
Figure A5. Matrix B1.
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B2 =

(0,11) (0,21) (0,22) (1,11) (1,21) (1,22) (2,11) (2,21) (2,22)

(0,0):1
(0,1):2 µ2

(0,2):3 2µ2

(1,0):4
(1,1):5 µ2

(1,2):6 2µ2

(2,0):7
(2,1):8 µ2

(2,2):9 2µ2

Figure A6. Matrix B2.

C0 =

(11,0) (11,1) (11,2) (21,0) (21,1) (21,2) (22,0) (22,1) (22,2)

(0,0):1
(0,1):2
(0,2):3
(1,0):4 µ1

(1,1):5 µ1

(1,2):6 µ1

(2,0):7 2µ1

(2,1):8 2µ1

(2,2):9 2µ1

Figure A7. Matrix C0.

C1 =

(11,0) (11,1) (11,2) (21,0) (21,1) (21,2) (22,0) (22,1) (22,2)

(11,0):1 * 2θ2 θ1
(11,1):2 λ2 * θ2 θ1
(11,2):3 2λ2 * θ1
(21,0):4 λ1 * 2θ2 µ1

(21,1):5 λ1 λ2 * θ2 µ1

(21,2):6 λ1 2λ2 * µ1

(22,0):7 * 2θ2
(22,1):8 µ2 λ2 * θ2
(22,2):9 2µ2 2λ2 *

Figure A8. Matrix C1.
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C2 =

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

(11,0): 1
(11,1): 2 µ2

(11,2): 3 2µ2

(21,0): 4
(21,1): 5 µ2

(21,2): 6 2µ2

(22,0): 7
(22,1): 8
(22,2): 9

Figure A9. Matrix C2.
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