
1. Introduction
Stream-processing systems are designed to handle large-scale applications where con-

tinuously arriving data items are streamed into a server, or a network of servers, that evaluate
user specified queries in real-time [11]. Such applications include market feed processing
and eTrading in stock exchanges (e.g., OPRA – https://www.opraplan.com/), net-
work access monitoring for denial of service attack patterns, fraud detection in financial
services and sensor-based monitoring and automation of industrial facilities.

For a concrete example of a practical application, consider the context of Twitter wherein
many thousands of tweets (small messages) are being generated by users at any moment.
These tweets will constitute the stream of incoming data items to be processed by servers
for analytic and statistic collection purposes. Among the metrics that are computed are the
number of times a given tweet is being re-tweeted, the number of tweets referring to a given
topic (or #hashtag), the most highly trending topics etc., which are continually being up-
dated in real time and are of importance to Twitter’s advertising customers. Apache Storm
[13] is Twitter’s first generation stream processing system and is also the one considered
here. Heron [7] and Apache Flink [2] are examples of other well-known stream processing
systems.

The data items, or ‘jobs’, arrive at a stream-processing server at the rate of many hun-
dreds per second, and although each of them typically requires only a small amount of
processing, they need to be sent to the processor with a minimum of delay. In such circum-
stances, the communication bandwidth between a producer of jobs and the processor that
executes them becomes a critical resource. Considerable thought has gone into designing
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servers which maximize that bandwidth; e.g., see Thompson et al. [12].
Existing designs for stream-processing servers contain an ‘external queue’, where jobs

are stored, and an ‘internal queue’, where jobs are directly accessed and executed by the
processor (in [12], it is convincingly argued that a good way to implement the internal queue
is by means of a ring buffer). Such a design is used, for example, in Apache Storm.

Transfers from the external queue to the internal queue tend to incur costs. In order
to minimize those costs, and also to make the transfers more efficient, jobs are grouped
into batches of fixed size prior to being transferred. As it is undesirable that the processor
remains idle while there are jobs present, there may also be a mechanism for transferring
incomplete batches to the inner queue when the latter is empty.

We construct, analyze and solve a stochastic model of such a stream-processing server.
The aim is to evaluate the trade-off between the number of jobs present (or the job response
time) and the number of transfers from the external to the internal queue. One possibility
is to treat the cost of a transfer as monetary (e.g., energy cost), while the transfer itself is
instantaneous. Alternatively, it is possible that transfers are non-instantaneous and impose a
lock on the inner queue. In that case, jobs would continue to arrive but the processor would
be blocked for the duration of the transfer. Both scenarios are modeled.

As far as we have been able to determine, this interaction between the internal and
external queues has not been analyzed before. Existing studies of stream-processing systems
have used various approximations based on models involving a single queue. Thus, De
Matteis and Mencagli [3], and Lohrmann et al. [8], have modelled a stream-processing
station as a G/G/1 queue. When the system is heavily loaded, the average response time
is approximated by applying Kingman’s result [6]. This requires that the variances of the
interarrival intervals and the service times are given or can be estimated. Composing these
G/G/1 nodes into a network then necessitates another level of approximation.

Fu et al. [4], and Vakilinia et al. [14] have used an M/M/c queue and a G/M/c queue,
respectively, to approximate a replicated stream-processing node. In [14], the authors also
looked at the possibility of using G/G/c nodes, but decided instead to replace the approxi-
mation by an upper bound.

None of these studies have examined the batching of jobs, or the cost of transfers to the
internal queue. Moreover, the accuracy of the chosen approximation has received very little
attention.

Our model has a distant resemblance to two queues in tandem, with a constrained pas-
sage of jobs from the first to the second. There is quite a large body of literature on tandem
queues (see, for example, Balsamo et al. [1], and Perros [10]). However, there do not appear
to be any results that would apply to the present case.

The model with instantaneous transfers, and some of its properties, are introduced in
section 2. The exact solution of that model is described in section 3, while section 4 presents
an efficient and arbitrarily accurate approximate solution. Section 5 deals with the exact
and approximate solution of the model with non-zero transfer times. Several numerical
experiments evaluating the trade-offs between holding costs and transfer costs are described
in section 6. Section 7 presents our conclusions.
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A preliminary version of this paper was presented at the 27th IEEE International Sym-
posium on the Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS 2019). It treated the model with non-zero transfer times in an incom-
plete fashion, omitting a number of derivations and lacking an implementation of the exact
solution. All those gaps are now filled, including new proofs and numerical examples. Also,
we have added a note comparing our approximaton with the matrix-analytic approach.

2. The Model with Instantaneous Transfers
Jobs arrive into the system in a Poisson stream at rate λ, and join an external queue

where they build up batches of size K. An incoming job that completes such a batch causes
all K jobs to be transferred instantaneously to an internal queue, where they are served one
at a time by a single processor. The service times are i.i.d random variables distributed
exponentially with mean 1/µ.

Thus, the content of the external queue never exceeds K − 1 jobs, while that of the
internal queue is unbounded.

Whenever the internal queue becomes empty, an exponentially distributed timer is started,
with mean 1/τ . If that timer expires before a batch of K jobs is completed in the external
queue, the current content of the external queue is transferred instantaneously to the internal
one; if a batch is completed before the timer expires, then the K jobs are transferred and the
timer is canceled.

The system structure is illustrated in Figure 1.
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Figure 1. External and internal queues

The batching and timer mechanisms imply that the arrival process at the internal queue
is not Poisson (except when K = 1). However, since every job arriving into the system
eventually joins the internal queue, the arrival rate at that queue is λ. Therefore, the stability
condition for the internal queue, and hence for the entire system, is independent of the
parameters K and τ , and is simply

λ < µ . (1)

The necessity and sufficiency of that condition will also be established more formally.
For every unit of time that a job is kept in the system (in either queue), a holding cost

of c1 is incurred. Also, at every transfer from the external to the internal queue (regardless
of the number of jobs transferred), a cost of c2 is incurred. Thus, the average cost that the
system incurs per unit time in the steady state is

C = c1L+ c2T , (2)
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where L is the average total number of jobs present in both queues and T is the average num-
ber of transfers per unit time. In order to compute that cost function, we need to determine
the joint steady-state distribution of the queue sizes.

The system state at any moment in time is described by the pair of integers (i, j), where
i is the number of jobs in the internal queue and j is the number of jobs in the external queue.
We wish to determine the steady-state probabilities, πi,j , of states (i, j), for i = 0, 1, . . . and
j = 0, 1, . . . , K − 1. This can be achieved by introducing the generating functions

gj(z) =
∞∑
i=0

πi,jz
i ; j = 0, 1, . . . , K − 1 . (3)

The probability, πn, that there is a total of n jobs in the system, is equal to

πn =
m∑
j=0

πn−j,j , (4)

where m = min(n,K − 1). The generating function of these probabilities is given by

G(z) =
∞∑
n=0

πnz
n =

K−1∑
j=0

gj(z)z
j . (5)

This function satisfies the normalizing condition

G(1) = 1 . (6)

The two components of the cost function (2), L and T , can be expressed in terms of the
above probabilities and generating functions. The average total number of jobs present is
obtained from

L = G′(1) . (7)

Since transfers occur either when an arrival finds K − 1 jobs in the external queue, or when
a timer expires with the external queue non-empty and the internal one empty, the average
number of transfers per unit time is given by

T = λgK−1(1) + τ
K−1∑
j=1

π0,j . (8)

The probabilities πi,j satisfy a set of balance equations. Since state (0, 0) is left only
when a job arrives, and is entered only when a service completes in state (1, 0), we have

λπ0,0 = µπ1,0 . (9)

When the inner queue is empty and the outer is non-empty, states are exited via an arrival
or a time-out, and are entered via an arrival or a service completion. The corresponding
balance equations are

(λ+ τ)π0,j = λπ0,j−1 + µπ1,j ; j = 1, 2, . . . , K − 1 . (10)
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The other ‘boundary’ states, when the outer queue is empty and the inner is non-empty,
are exited via an arrival or a service completion. They are entered via a service completion,
a time-out that transfers an incomplete batch, or an arrival that transfers a complete batch.
The resulting equations are

(λ+ µ)πi,0 = µπi+1,0 + τπ0,i ; i = 1, 2, . . . , K − 1 (11)
(λ+ µ)πi,0 = µπi+1,0 + λπi−K,K−1 ; i = K,K + 1, . . . . (12)

For all other states, both exit and entry are via an arrival or a service completion:

(λ+ µ)πi,j = λπi,j−1 + µπi+1,j ; i = 1, 2, . . . ; j = 1, 2, . . . , K − 1 . (13)

The next step is to transform the balance equations into functional equations for the gen-
erating functions. Multiplying (9), (11) and (12) by zi, and summing over all i = 0, 1, . . .,
yields, after dividing both sides by µ and a little manipulation, an equation of the form

a(z)g0(z) = ρzK+1gK−1(z) + b0(z) . (14)

Here, ρ = λ/µ is the offered load at the inner queue, while

a(z) = ρz + z − 1 ,

and

b0(z) = (z − 1)π0,0 + σz
K−1∑
j=1

zjπ0,j ,

with σ = τ/µ. Similarly, multiplying (10) and (13) by zi, and summing over all i = 0, 1, . . .,
yields

a(z)gj(z) = ρzgj−1(z) + bj(z) ; j = 1, 2, . . . , K − 1 , (15)

where a(z) is the same as before, and

bj(z) = (z − 1− σz)π0,j .

Finally, multiplying (14) and (15) by zj , summing over j = 0, 1, . . . , K − 1 and perform-
ing cancellations, leads to a rather simple equation for the generating function of the total
number of jobs in the system:

(1− ρz)G(z) =
K−1∑
j=0

zjπ0,j . (16)

Note that the parameter τ does not appear explicitly in this equation. However, it affects the
probabilities π0,j .
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Setting z = 1 in (16), and remembering the normalizing condition (6), gives, as could
have been expected,

K−1∑
j=0

π0,j = 1− ρ . (17)

Also, differentiating (16) with respect to z and setting z = 1 produces an expression for the
average total number of jobs in the system:

L =
ρ

1− ρ
+

1

1− ρ

K−1∑
j=1

jπ0,j . (18)

So far, the quantities L and T that appear in the cost function (2) have been expressed
in terms of the K − 1 boundary probabilities π0,j , for j = 1, 2, . . . , K − 1, and the value
gK−1(1). The next task is to determine these unknowns.

3. Exact Solution
Equations (14) and (15) constitute a set of K simultaneous linear equations for the K

generating functions g0(z), g1(z), . . . , gK−1(z). They can be written in matrix and vector
form as follows:

A(z)g(z) = b(z) , (19)

where g(z) is the column vector of generating functions, b(z) is the column vector of free
terms, [b0(z), b1(z), . . . , bK−1(z)], and the K ×K matrix A(z) has the form

A(z) =




a(z) −ρzK+1

−ρz a(z)
−ρz a(z)

. . .
−ρz a(z)

−ρz a(z)




.

The solution of (19) can be expressed as

gj(z) =
Dj(z)

D(z)
; j = 0, 1, . . . , K − 1 , (20)

where D(z) is the determinant of the matrix A(z), and Dj(z) is the the determinant of
the matrix, Aj(z), obtained by replacing column j + 1 of A(z) with the column b(z) (the
columns are numbered from 1 to K, rather than from 0 to K − 1). In particular,

gK−1(z) =
DK−1(z)

D(z)
, (21)
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where DK−1(z) is the determinant of the matrix

AK−1(z) =




a(z) b0(z)
−ρz a(z) b1(z)

−ρz a(z) b2(z)
. . .

−ρz a(z) bK−2(z)
−ρz bK−1(z)




.

To determine the denominator in (21), expand D(z) along its first row, where there are
only two non-zero terms. This yields a simple expression:

D(z) = a(z)K − (ρz2)K . (22)

Expanding DK−1(z) along its last column, we obtain

DK−1(z) =
K−1∑
j=0

bj(z)a(z)
j(ρz)K−1−j . (23)

It is quite simple to verify that both D(z) and DK−1(z) vanish at z = 1. Hence, the
value of gK−1(1) is obtained by applying L’Hospital’s rule:

gK−1(1) =
D′

K−1(1)

D′(1)
. (24)

Substituting (22) and (23) into (24), taking derivatives at z = 1 and performing simpli-
fications, yields

gK−1(1) =
1

K

[
1− τ

λ

K−1∑
j=1

jπ0,j

]
. (25)

It now remains to find the K probabilities π0,j , for j = 0, 1, . . . , K − 1. One relation
between them is the normalizing equation (17). To derive additional equations, note that
since the power series gK−1(z) converges at z = 1, it must converge in the entire interior of
the unit disc. Therefore, if the denominator in (21), D(z), is equal to 0 for some z such that
|z| < 1, then the numerator, DK−1(z), must also be equal to 0 at that point.

The following result provides the required number of additional equations.

Proposition 1. The polynomial D(z) has exactly K−1 distinct zeros, z1, z2, . . ., zK−1, such
that |zk| < 1, k = 1, 2, . . . , K − 1. If K is even, then one of the zeros is real and the others
are complex, forming (K − 2)/2 complex-conjugate pairs. If K is odd, then all zeros are
complex, forming (K − 1)/2 complex-conjugate pairs.
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The proof of this proposition is in the Appendix. The zeros of D(z) are obtained in
closed form.

If zk is real, then substituting it into the expression (23) for DK−1(z) and equating the
latter to 0, provides one equation for the unknown probabilities. If zk is complex, then
equating the real and imaginary parts of DK−1(zk) to 0 provides two equations. The other
member of the complex-conjugate pair would not be used, as it would yield the same two
equations.

Thus, Proposition 1 provides K − 1 additional equations, which, together with (17),
enable us to compute the probabilities π0,j and hence the cost function (2).

The above solution is easily implementable and is efficient. However, it does not scale
well when K increases. We have observed that when K is larger than about 25, the exact
solution begins to experience numerical problems. The matrix associated with the set of
linear equations provided by the K−1 zeros of D(z) becomes ill-conditioned. The solution
then ceases to be reliable.

For that reason, it is desirable to develop a different solution that would be accurate and
robust, and handle models with large values of K. We propose a simple approximation that
satisfies these requirements.

4. Approximate Solution
The idea of the proposed approximation is to truncate the state space and devise an

efficient iterative procedure for solving the resulting balance equations. An integer m is
chosen appropriately, and it is assumed that all probabilities πi,j , where i > m, are 0. Such
an assumption can be justified as follows.

According to (16), the distribution of the total number of jobs in the system, n, has a
geometric tail with parameter ρ. Indeed, when the inner queue is not empty, n goes up to
n + 1 and down to n − 1 with instantaneous rates λ and µ, respectively, i.e. that number
behaves like an M/M/1 queue with offered load ρ. Hence, the probabilities πi,j decrease
with i roughly on the order of ρi. The truncation level m can be chosen so that ρm < ε, for
some small ε. Since that value can be chosen as small as desired, the approximation based
on such a truncation can be considered exact for practical purposes.

The following algorithm implements an efficient solution of the truncated set of balance
equations.

1. Start by making initial guesses for the values of π0,j , j = 0, 1, . . . , K − 1, and πi,K−1,
i = 1, . . . ,m. For example, set π0,j = (λ/(λ+τ))j , and πi,K−1 = π0,K−1(λ/(λ+µ))i.
Normalize those guesses so that (17) is satisfied.

2. Using equations (12) and (11), and working backwards from i = m down to i = 1,
compute the probabilities πi,0. Then (9) yields a new value for π0,0.

3. Using equations (13), for j increasing from j = 1 to j = K−1 and i decreasing from
i = m down to i = 1, compute the probabilities πi,j . As the j’th row is completed,
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(10) is used to compute a new value for π0,j . By the end of this step, the initial guesses
have been modified.

4. Normalize π0,j so that (17) is satisfied.

5. Iterate steps 2–4 until two consecutive estimates of the probabilities π0,j , j = 0, 1, . . . ,
K − 1, are sufficiently close to each other.

6. Compute the performance measures L and T according to (18), (8) and (25).

The above algorithm has the advantage that it does not involve the solution of a set of
simultaneous equations. Also, the exact normalization applied at each iteration speeds up
convergence. There are no problems with numerical stability, and large values of K are
handled easily. Moreover, an implementation that overwrites old probabilities with new
ones would need to store only one row (an array of size m) and one column (array of size
K) in order to carry out the iterations.

Note. The generator of our Markov process can be represented as an upper block Hes-
senberg matrix of the M/G/1 type. One could therefore use a matrix-analytic algorithm (see
[9]) to determine the invariant measure. Although that is, in principle, an exact solution, in
practice it is an approximation because it requires the computation of a certain (K × K)
matrix, G. The latter is usually evaluated iteratively as a solution to a matrix polynomial
equation of order K. The K + 1 terms of that polynomial involve matrix multiplications
whose number varies from 2 to K. Hence, the total number of multplications required to
evaluate the polynomal is on the order of O(K2). Since each multiplication of (K × K)
matrices has numerical complexity on the order of O(K3), the total complexity of one iter-
ation in the computation of G is on the order of O(K5). This compares rather unfavourably
with our proposed algorithm which, by exploiting the special structure of the process, has a
numerical complexity on the order of O(Km) per teration. We obtain high accuracy with
values of m not much larger than K.

5. Model with Non-zero Transfer Times
Assume that a transfer from the outer to the inner queue takes an exponentially dis-

tributed interval of time with mean 1/γ. During that interval, jobs may continue to arrive
and join the outer queue, but the processor is blocked. Any preempted service is eventually
resumed from the point of interruption. At the end of the transfer interval, all jobs currently
in the outer queue join the inner queue.

The processor blocking means that the condition ρ < 1 is no longer sufficient for the
stability of the system. To find the new necessary and sufficient condition we argue as
follows: The fraction of time required to serve the incoming jobs is ρ; during that time,
every K’th arrival causes a transfer interruption which lasts for an average of 1/γ; hence,
while the inner queue is not empty, the processor is blocked for a fraction ρλ/(Kγ) of the
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time. Consequently, the stability condition is

ρ+
ρλ

Kγ
< 1 . (26)

That condition will also be derived analytically.
The system state is now described by a triple, (i, j, s), where i and j are the numbers of

jobs present in the inner and outer queue, and s indicates the state of the processor: s = 0 if
the processor is blocked (i.e., a transfer is in progress), s = 1 if the processor is operative.
Since transfers are initiated when the inner queue is empty, or when the size of the outer
queue is K − 1, the feasible states with s = 0 are (0, j, 0), for j > 0, and (i, j, 0), for
j > K − 1. The feasible states with s = 1 are (i, j, 1), for i ≥ 0 and j = 0, 1, . . . , K − 1.

Denote the steady-state probability of (i, j, 0) by qi,j , and the steady-state probability
of (i, j, 1) by πi,j . It is also convenient to define the probability, rn, that there is a total of
n jobs in the system and there is a transfer in progress. The reason for introducing those
probabilities is that if a transfer completes in any state where there are n jobs present, the
resulting state would be (n, 0, 1).

For n = 1, 2, . . . , K − 1, rn = q0,n (the inner queue must then be empty), while for
n ≥ K,

rn =
n−K∑
i=0

qi,n−i . (27)

A state with a total of n jobs present and a transfer in progress is exited when a job
arrives or the transfer completes. It is entered when an incoming job finds n − 1 jobs
present and a transfer in progress, or when a transfer is initiated. The corresponding balance
equations are

(λ+ γ)rn = λrn−1 + τπ0,n ; n = 1, 2, . . . , K − 1 (28)
(λ+ γ)rn = λrn−1 + λπn−K,K−1 ; n = K,K + 1, . . . , (29)

with r0 = 0 (there can be no transfer in an idle system).
Multiplying the above equations by zn and summing, we obtain an equation for the

generating function, H(z), of the probabilities rn:

[λ(1− z) + γ]H(z) = τ

K−1∑
j=1

π0,jz
j + λzKgK−1(z) , (30)

where gK−1(z) is the generating function of the probabilities πi,K−1 (defined as in (3)).
The average number of transfers per unit time can be obtained from T = γH(1), which

reduces to the same expression as (8).
The probabilities of states where the processor is operative satisfy the following balance
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equations:

λπ0,0 = µπ1,0 . (31)
(λ+ µ)πi,0 = µπi+1,0 + γri ; i = 1, 2, . . . , (32)
(λ+ τ)π0,j = λπ0,j−1 + µπ1,j ; j = 1, 2, . . . , K − 1 . (33)
(λ+ µ)πi,j = λπi,j−1 + µπi+1,j ; i = 1, 2, . . . ; j = 1, 2, . . . , K − 1 . (34)

Multiplying (31) and (32) by zi and summing over all i yields

a(z)g0(z) = (z − 1)π0,0 +
γz

µ
H(z) , (35)

where a(z) = ρz + z − 1. After substitution of (30), this becomes an equation similar to
(14):

a(z)g0(z) = α(z)ρzK+1gK−1(z) + b0(z) , (36)

where
α(z) =

γ

λ(1− z) + γ
, (37)

and

b0(z) = (z − 1)π0,0 + α(z)σz
K−1∑
j=1

π0,jz
j , (38)

Again, σ = τ/µ.
The equations satisfied by the other generating functions, gj(z), for j = 1, 2, . . . , K−1,

are the same as (15). The generating function, G(z), of the total number of jobs in the
system when the processor is operative, is obtained by multiplying (36) and (15) by zj and
summing. This yields, after some manipulations,

(1− ρz)G(z) = ξρα(z)zK+1gK−1(z) +
K−1∑
j=0

π0,jz
j + ξσα(z)

K−1∑
j=1

π0,jz
j , (39)

where ξ = λ/γ
The generating function of the unconditional total number of jobs in the system is

G(z) +H(z). This can be written as

(1− ρz)[G(z) +H(z)] =
K−1∑
j=0

π0,jz
j + α(z)

[
ξzKgK−1(z) + η

K−1∑
j=1

π0,jz
j

]
, (40)

where η = τ/γ
Setting z = 1 in the above, we find a new form of the normalizing equation:

(1− ρ) =
K−1∑
j=0

π0,j + ξgK−1(1) + η

K−1∑
j=1

π0,j . (41)
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This expression is quite intuitive: the first term in the right-hand side is the fraction of
time that the inner queue is empty, with the processor operative, and the other two terms
are the fraction of time occupied by transfers (with the processor blocked); the total is the
fraction of time that the processor is not serving jobs.

Equations (8) and (41) provide a simple expression for the average number of transfers
per unit time:

T = γ(1− ρ)− γ
K−1∑
j=0

π0,j . (42)

The total average number of jobs in the system, L, is given by L = G′(1) +H ′(1), and
is obtained by differentiating (40) at z = 1. This yields

L =
1

1− ρ

[
ρ+

ξ

γ
T + (1 + η)

K−1∑
j=0

jπ0,j + ξ[KgK−1(1) + g′K−1(1)]

]
. (43)

The cost function is thus expressed in terms of the probabilities π0,j , and the values of
gK−1(1) and g′K−1(1). Those quantities are yet to be determined.

The exact solution of this model proceeds along similar lines to the one in in section 3.
As in (21), the generating function gK−1(z) is expressed as the ratio of two determinants

gK−1(z) =
DK−1(z)

D(z)
, (44)

where D(z) now has the form

D(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a(z) −α(z)ρzK+1

−ρz a(z)
−ρz a(z)

. . .
−ρz a(z)

−ρz a(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (45)

with a(z) = ρz+ z− 1 and α(z) given by (37). The determinant DK−1(z) is obtained from
D(z) by replacing its last column with the new column vector [b0(z), b1(z), . . . , bK−1(z)],
where only b0(z) has changed. Expanding DK−1(z) along its last column we obtain an
expression similar to (23), except that b0(z) is now given by (38).

The denominator in (44) is given by

D(z) = a(z)K − α(z)(ρz2)K . (46)

Again, both DK−1(z) and D(z) vanish at z = 1, so the value of gK−1(1) is obtained by
applying L’Hospital’s rule to (44). This eventually leads to

gK−1(1) =
γ

Kγ(1− ρ)− λρ

[
K−1∑
j=0

π0,j + τ

K−1∑
j=1

π0,j

(
ρ

γ
− j

1− ρ

λ

)]
. (47)
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We also need to find g′K−1(1). Taking derivatives in (44) gives

g′K−1(z) =
D′

K−1(z)D(z)−DK−1(z)D
′(z)

D2(z)
. (48)

When z = 1, the right-hand side of (48) has an indeterminacy of order 2. Hence, two appli-
cations of L’Hospital’s rule are required in order to resolve it. Differentiating the numerator
and the denominator twice at z = 1 yields

g′K−1(1) =
D′′

K−1(1)D
′(1)−D′

K−1(1)D
′′(1)

2D′(z)2
. (49)

Here,
D′(1) = ρK−1[K(1− ρ)− ξρ] , (50)

and

D′′(1) = KρK−2[(K − 1)(1 + ρ)2 − 2ξρ(1 + ρ)− (4K − 2)ρ2] + 2ξD′(1) . (51)

The first and second derivatives of DK−1(x) at z = 1 are obtained by differentiating (23),
using the new form of b0(z).

We are now left with K unknowns: the probabilities π0,0, π0,1, . . ., π0,K−1. A normaliz-
ing equation for those probabilities is obtained by substituting (47) into (41). We get

(K + ξ)
K−1∑
j=0

π0,j + η
K−1∑
j=1

(K − j)π0,j = K(1− ρ)− ξρ . (52)

This equation proves the necessity of condition (26) for stability of the system. Indeed,
if normalizeable steady-state probabilities exist, then the right-hand side of (52) must be
positive, which is equivalent to (26).

The sufficiency of the condition is demonstrated by the following result:

Proposition 2. When the inequality (26) holds, the function D(z) given by (46) has exactly
K − 1 zeros, z1, z2, . . ., zK−1, such that |zk| < 1, k = 1, 2, . . . , K − 1.

The proof of this proposition is in the appendix. It shows that K − 1 equations for the
unknown probabilities can be obtained by equating the numerator in (44) to 0 at points zk.
Together with (52), these equations determine the remaining K unknowns π0,0, π0,1, . . .,
π0,K−1.

In an implementation of the exact solution, the zeros zk have to be computed numeri-
cally; we do not have closed-form expressions for them. That computation is not difficult,
even though D(z) is not a polynomial. The product [λ(1 − z) + γ]D(z) is a polynomial,
and its zeros in the interior of the unit disc coincide with those of D(z). We do not know
how many of those zeros are grouped into complex-conjugate pairs and how many are real.
A plausible conjecture, supported by several numerical examples, is that the situation is
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similar to the one described in Proposition 1: when K is even, there is one real zero and
(K − 2)/2 pairs of complex-conjugate ones; when K is odd, there are (K − 1)/2 pairs of
complex-conjugate zeros.

As with the previous model, the exact solution is fine as long as K is reasonably small,
but eventually it becomes impractical. Numerical problems begin to emerge when K is
larger than about 17. However, a stable, accurate and easily implementable approximate
solution similar to the one in section 4 is readily available.

Truncate the state space by assuming that πi,j = 0 for i > m, and rn = 0 for n > N ,
for some m and N . That is, the inner queue does not grow beyond m during operative
periods and the total number of jobs does not grow beyond N during transfer periods. Such
a truncation can be made arbitrarily accurate. In view of (29), a reasonable choice for N
would be N = m+K.

The truncated set of balance equations are solved by an iterative algorithm:

1. Start by making initial guesses for the values of π0,j , j = 0, 1, . . . , K − 1, and πi,K−1,
i = 1, . . . ,m.

2. Using equations (28) and (29), compute the probabilities rn, n = 1, 2, . . . , N .

3. Using equations (31) and (32), and working backwards from i = m down to i = 0,
compute the probabilities πi,0, including a new value for π0,0.

4. Using equations (34) and (33), for j increasing from j = 1 to j = K − 1 and i
decreasing from i = m down to i = 0, compute the probabilities πi,j , including a new
value for π0,j .

5. Normalize π0,j so that (52) is satisfied.

6. Iterate steps 2–5 until two consecutive estimates of the probabilities π0,j , j = 0, 1, . . . ,
K − 1, are sufficiently close to each other.

7. Compute the performance measures L and T using (43), (42), (47) and (49).

Again, we have an algorithm that does not involve the solution of a set of simultaneous
equations. It handles large values of K without problems, and its storage requirements are
on the order of O(m+N).

It should be pointed out that, since the size of the external queue is now unbounded, the
matrix-analytic solution is not applicable to the model with non-instantaneous transfers.

6. Numerical Results
We have carried out several numerical experiments aimed at examining the behaviour

of the system under reasonably realistic loading conditions, with zero and non-zero trans-
fer times. The trade-offs between holding and transfer costs are evaluated, with a view to
optimizing the controllable parameters, τ and K.
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The first three examples concern a system with instantaneous transfer times. Jobs arrive
at the rate of 750 per second, and the average service time is 1 millisecond. The offered load
is thus ρ = 0.75.

Figure 2 illustrates a system with a batch size of K = 25. The unit holding and transfer
costs are c1 = 1 and c2 = 0.05, respectively. The cost function C is plotted against the
timer rate τ . In this example, the exact solution is compared with a ‘cheap’ approximation.
We know that the approximate solution can be made arbitrarily accurate by choosing a
sufficiently high truncation level. Here the aim is to show that even when that level is quite
low, the results can be very acceptable. We have chosen m = 25, so that ρm ≈ 0.001.
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Figure 2. Instantaneous transfers: exact & approximate cost vs. τ
K = 25, λ = 750, µ = 1000, c1 = 1, c2 = 0.05, m = 25

The optimal value of τ in this example is around 600. Below that value, the cost function
is higher because of higher holding costs; above it, it is higher because of higher transfer
costs. At this truncation level, the largest relative error of the approximation is about 2%. If
the value of m is increased to 50, the approximate solution plot becomes indistinguishable
from the exact solution.

In the second example, the batch size is increased to K = 100, which is the value used
in the Apache Storm implementation. The arrival and service rates are as before. At this
batch size, the only way of obtaining accurate results is to apply the approximate solution
with a large truncation level. We have chosen m = 200. Given that ρm < 10−20, the
resulting accuracy should be more than adequate.

In Figure 3, the cost function C is plotted against τ for three different unit transfer costs:
c2 = 0.05, c2 = 0.10 and c2 = 0.15.

Intuitively, when transfers are more expensive, it is worth trying to delay them for
longer. In other words, the optimal timer rate should decrease with c2. This is indeed
what is observed. As c2 increases from 0.05 to 0.15, the optimal τ decreases from 600 to
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Figure 3. Larger batches: cost vs. τ for different c2
K = 100, λ = 750, µ = 1000, c1 = 1, m = 200

300. In addition, when the unit transfer rate is higher, the cost function is steeper, which
means that it is more important to operate close to the optimal regime.

There are also trade-offs associated with the batch size, K. Lowering the value of K
reduces holding costs by ‘feeding’ the inner queue more frequently and hence improving
the server utilization. However, the transfer costs are then increased. Moreover, the optimal
value of τ depends, in general, on the value of K. One should therefore optimize with
respect to τ for different batch sizes, in order to search for the globally otimal pair (K, τ).

This is done in the next experiment, illustrated in Figure 4. The batch size is varied, and
the optimal value of τ is found for each value of K. The resulting minimal cost, C, is plotted
against K, for three different unit transfer costs: c2 = 0.05, c2 = 0.10 and c2 = 0.15.

The results confirm the intuition that when the unit transfer cost is higher, the optimal
batch size is higher (so that transfers become less frequent). The globally optimal pairs
(K, τ) fot this example are: (K = 6, τ = 10) for c2 = 0.05, (K = 8, τ = 10) for c2 = 0.10
and (K = 12, τ = 10) for c2 = 0.15.

A less intuitive observation is that the minimal cost flattens out beyond the optimal
point. In other words, over-estimating the value of K, even by a large amount, would not
cause a large increase in costs, as long as the corresponding value of τ is chosen optimally.
What happens here is that if the batch size is large and the server is not too heavily loaded,
most of the transfers occur when the inner queue is empty. The optimal τ is then large
enough to ensure that the server is not kept idle for long, and small enough to prevent too
many transfers. For example, the results in Figure 3 show that, when K = 100, the minimal
costs corresponding to c2 = 0.05, c2 = 0.10 and c2 = 0.15, achieved by τ = 600, τ = 400
and τ = 300, are C = 14.6, C = 20 and C = 23, respectively. These are only a little
higher than the corresponding globally minimal costs in Figure 4, C = 13.3, C = 17.4 and
C = 21.
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Figure 4. Optimal cost vs. K for different c2
λ = 750, µ = 1000, c1 = 1

The remaining experiments concern the model with non-instantaneous transfer times.
We first compare the exact and the approximate solutions. The aim is to see how low the
level of truncation can be while still achieving good approximations under different loading
conditions. The batch size, service rate, timer rate and transfer rate are fixed at K = 15,
µ = 1000, τ = 1000, γ = 600. The holding and transfer cost coefficients are c1 = 1 and
c2 = 0.1 respectively. The arrival rate is varied between 600 and 870 jobs per second. For
this parameter set the stability condition (26) is violated when λ = 941, which means that
the loading is varied between 64% and 92%.

Three versions of the cost function, plotted against λ, are shown in Figure 5. They were
produced by the exact solution, the approximate solution with truncation level m = 15, and
the approximate solution with truncation level m = 45, respectively.

We observe that even when the state space is truncated at the batch size, the approxi-
mation is quite good. When the truncation is at three times the batch size, the approximate
solution becomes almost indistinguishable from the exact solution over the entire range of
offered loads.

In Figure 6, the cost cunction is plotted against τ for three different transfer rates. The
arrival rate, service rate and holding cost are as before, while the transfer cost is fixed at
c2 = 0.1. The batch size is K = 25. The approximate solution algorithm was used, but the
truncation level was set at m = 100, which means that the results are exact for all practical
purposes.

The figure shows that when γ increases, the optimal value of τ decreases. This is quite
an intuitive observation. If transfers are fast, delaying them can reduce costs, but if they are
slow, it is better to initiate them quickly. In fact, when γ = 300 (i.e. an average transfer
is longer than three average service times), the optimal timer rate appears to be τ = ∞; a
transfer to an empty internal queue should be initiated as soon as a new job arrives.
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Figure 6. Non-instantaneous transfers; Cost vs. τ for different γ
K = 25, λ = 750, µ = 1000, c1 = 1, c2 = 0.1, m = 100

Figure 7 illustrates a joint optimisation with respect to both K and τ , for the same three
different transfer rates. The batch size is varied, and for each K, the optimal τ is found and
the resulting cost function is plotted. Note that the stability condition (26) imposes a lower
bound on K which depends on γ. When γ = 900, K cannot be lower than 4; when γ = 600,
K ≥ 5 and when γ = 300, K ≥ 9.

The global optimum is reached for (K = 12, τ = 250) when γ = 900, for (K =
17, τ = 650) when γ = 600 and, apparently, for (K = ∞, τ = ∞) when γ = 300. This
last pair of parameter values corresponds to the policy which keeps all incoming jobs in the
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Figure 7. Non-instantaneous transfers; Optimal cost vs. K for different γ
λ = 750, µ = 1000, c1 = 1, c2 = 0.1, m = 100

external queue, waiting for the internal queue to become empty; a transfer is initiated as
soon as that happens, or, if the external queue is also empty at that point, as soon as the next
job arrives. This might be called the ‘default policy’. The above experiment, and others as
well, have shown that the default policy is optimal when the transfer rate is low. Moreover,
it seems that it is quite a good policy whenever the transfer rate is appreciably lower than the
service rate. This is because the optimal cost function tends to flatten out when K increases,
and also becomes less dependent on γ.

7. Conclusion
We have analysed a non-trivial model of a stream-processing server with an external

and an internal queue. Transfers between the two may be either instantaneous or non-
instantaneous. Exact and approximate solutions have been obtained, enabling the evaluation
and optimization of the trade-offs between holding costs and transfer costs.

It was interesting to observe that, while underestimating the optimal batch size can be
very expensive, overestimating it tends to be quite safe. This is true for both instantaneous
and non-instantaneous transfers. In particular, the default policy introduced at the end of
last section would be a good choice to use whenever the transfer times are non-negligible.

In some implementations of Apache Storm, the flush timer is always active, regardless of
whether the internal queue is empty or not. In other words, when transfers are instantaneous,
there is a transition from state (i, j) to state (i + j, 0) with rate τ , for all i ≥ 0 and j =
1, 2, . . . , K−1. Appropriate modifications are in order when transfers are not instantaneous.
That variation of the model can be analyzed by the methods we have employed here. The set
of equations for the generating functions would be different, but one would still need to find
the zeros of a denominator in order to compute the exact solution. An iterative approximate
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solution could be obtained by truncating the state space.
The results obtained for one server can be used to approximate the behaviour of a net-

work of servers. One would treat each node in isolation, after determining the total arrival
rate into it (external and from other nodes), and assuming that the merged process of arrivals
is Poisson.

An ability to evaluate the network behaviour has significant practical implications for
performance optimisation and adaptation in stream processing systems. A query in such
systems is evaluated by a set of logical operators organised in a directed acyclic graph; to
achieve performance targets, several instances of a logical operator may have to be work-
ing in parallel on servers such as the ones we have modeled. A model based approach to
evaluating network level performance would enable one to optimize the configuration of the
network to meet performance targets for a given set of input streaming rates, and to adapt
them when the rates change significantly. This is something which the modern systems can-
not yet do and it is our on-going work (see [5] for progress in collaboration with Twitter).

Finally, the effect of different traffic characteristics, e.g. non-exponential service times
or non-Poisson arrivals, can only be evaluated by means of simulations or observations of a
real-life system. That, too, would be worth pursuing further.
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Appendix
Proof of Proposition 1. We invoke Rouché’s theorem, which states that if two holomor-

phic functions, φ(z) and ψ(z), satisfy |φ(z)| > |ψ(z)| on a simple closed contour, then φ(z)
and φ(z) + ψ(z) have the same number of zeros inside that contour. Each zero is counted
according to its multiplicity.

In the case of D(z), given by (22), let φ(z) = a(z)K and ψ(z) = −(ρz2)K . The closed
contour is the unit circle. When |z| = 1, |ψ(z)| = ρK , while

|a(z)K | = |(1 + ρ)z − 1|K ≥ [|(1 + ρ)z| − 1]K = ρK , (53)

with equality only at the point z = 1 (here we have used the triangle inequality |v − w| ≥
|v| − |w|).

Let us modify the contour slightly, by making it pass through a point z = 1+ ε for some
positive ε, as illustrated in Figure 8. Since D(1) = 0 and D′(1) = KρK−1(1 − ρ) > 0, it
is possible to choose ε so that D(1 + ε) > 0. In other words, |φ(1 + ε)| − |ψ(1 + ε)| > 0.
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Moreover, if ε is sufficiently small, the extra part of the contour will not encounter any of
the exterior zeros of D(z) and hence the difference |φ(z)| − |ψ(z)| will not change sign on
that extra part. Then the inequality |φ(z)| > |ψ(z)| would be strict on the entire modified
contour.
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Figure 8. Modified contour

Rouché’s theorem now tells us that D(z) has the same number of zeros inside the mod-
ified contour as does φ(z) = a(z)K . Note that a(z), which is linear in z, has a zero at
z = 1/(1 + ρ). That is, φ(z) has a zero of order K at that point, and no other zeros. There-
fore, D(z) has K zeros inside the modified contour. One of these is at z = 1, which means
that there are K − 1 zeros in the interior of the unit disc.

To identify the zeros of D(z) explicitly, write the equation D(z) = 0 as

a(z)K = (ρz2)K . (54)

Taking roots of order K at both sides, we get

a(z) = ρz2
K
√
1 . (55)

Denote the K roots of unity by e0, e1, . . ., eK−1. They are given by

ek = cos(kθ) + i sin(kθ) ; k = 0, 1, . . . , K − 1 , (56)

where θ = 2π/K. Thus, e0 = 1. For k < K/2, ek and eK−k are complex-conjugate. If K is
even, then eK/2 = −1.

For each k, (55) becomes a quadratic equation

ρekz
2 − a(z) = ρekz

2 − (1 + ρ)z + 1 = 0 . (57)

Those equations have two roots each, zk,1 and zk,2, given by

zk,1 =
1 + ρ+

√
(1 + ρ)2 − 4ρek
2ρek

, (58)

and

zk,2 =
1 + ρ−

√
(1 + ρ)2 − 4ρek
2ρek

. (59)
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The above 2K roots are all the zeros of D(z).
Note that, for every k, zk,1 and zk,2 satisfy

|zk,1||zk,2| =
1

ρ
> 1 ; k = 0, 1, . . . , K − 1 . (60)

Hence, at least one of those two roots, and in particular the one with the larger modulus, zk,1,
is outside the unit disc. Consequently, the K−1 zeros of D(z) in the interior of the unit disc
must be zk,2, for k = 1, 2, . . . , K − 1. Moreover, zk,2 and zK−k,2 are complex-conjugate,
and if K is even, zK/2,2 is real. This completes the proof of the Proposition.

Proof of Proposition 2. Again we apply Rouché’s theorem, this time to the function
D(z) = φ(z) + ψ(z) = a(z)K − α(z)(ρz2)K , with α(z) = γ/[λ(1 − z) + γ]. The closed
contour is the unit circle. The proof of Proposition 1 has already established that when
|z| = 1, |φ(z)| ≥ ρK . To bound |ψ(z)|, note that, on the unit circle, the denominator of α(z)
satisfies

|λ(1− z) + γ| ≥ λ+ γ − λ|z| = γ .

Therefore, |α(z)| ≤ 1, which implies |ψ(z)| ≤ ρK . Thus, |φ(z)| ≥ |ψ(z)|. Moreover, the
inequality is strict on the entire contour, except at the point z = 1 where |φ(z)| = |ψ(z)|.

Now we note that D′(1), given by (50), is positive when the stability condition (26)
holds. Hence, it is possible to choose ε sufficiently small, so that D(1 + ε) > 0. Modifying
the contour slightly, making it pass through point 1 + ε as illustrated in Figure 8, would
ensure a strict inequality |φ(z)| > |ψ(z)| on the entire modified contour.

Rouché’s theorem states that D(z) and φ(z) have the same number of zeros in the inte-
rior of the modified contour. We saw that the latter has one zero of order K, which means
that D(z) has, in addition to its zero at z = 1, K − 1 other zeros inside the interior of the
unit disc. QED.
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